langsmoke/ref_c

273 lines
8.0 KiB
Plaintext

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <ctype.h>
#include <time.h>
#include <limits.h>
#include <float.h>
#include <stdarg.h>
#include <stddef.h>
#include <locale.h>
#include <errno.h>
<signal.h> <setjmp.h> <time.h> <complex.h> <fenv.h> <inttypes.h> <stdbool.h> <stdalign.h> <stdatomic.h> <stdnoreturn.h>
auto bool break case char const continue default do double else enum
extern false float for goto if inline int long register
restrict return short signed sizeof static static_assert struct switch
typedef union unsigned void volatile while
#define #undef #if #ifdef #ifndef #elif #else #endif #include #define #undef #line #error #pragma
uint8_t uint16_t uint32_t uint64_t int8_t int16_t int32_t int64_t
fseek(f, 0, SEEK_END); size = ftell(f); rewind(f);
assert(size + B <= MEM);
assert(fread(&m[B], sizeof(unsigned char), size, f) == size);
fclose(f);
static int32_t mrlec(unsigned char * in, int32_t inlen, unsigned char * out) {
unsigned char * ip = in;
unsigned char * in_end = in + inlen;
int32_t op = 0;
int32_t c, pc = -1;
int32_t t[256] = { 0 };
int32_t run = 0;
while ((c = (ip < in_end ? *ip++ : -1)) != -1) {
if (c == pc)
t[c] += (++run % 255) != 0;
else
--t[c], run = 0;
pc = c;
}
for (int32_t i = 0; i < 32; ++i) {
c = 0;
for (int32_t j = 0; j < 8; ++j) c += (t[i * 8 + j] > 0) << j;
out[op++] = c;
}
ip = in;
c = pc = -1;
run = 0;
do {
c = ip < in_end ? *ip++ : -1;
if (c == pc)
++run;
else if (run > 0 && t[pc] > 0) {
out[op++] = pc;
for (; run > 255; run -= 255) out[op++] = 255;
out[op++] = run - 1;
run = 1;
} else
for (++run; run > 1; --run) out[op++] = pc;
pc = c;
} while (c != -1);
return op;
}
void put_int(int i) {
if (i < 0) {
putchar('-');
i *= -1;
}
char buf[10];
int j = 0;
do {
buf[j++] = i % 10 + '0';
i /= 10;
} while (i > 0);
while (j > 0) putchar(buf[--j]);
}
int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
{
VCN end_vcn;
unsigned long flags;
ntfs_inode *base_ni;
MFT_RECORD *m;
ATTR_RECORD *a;
runlist_element *rl;
struct page *put_this_page = NULL;
int err = 0;
bool ctx_is_temporary, ctx_needs_reset;
ntfs_attr_search_ctx old_ctx = { NULL, };
ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
(unsigned long long)vcn);
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
if (!ctx) {
ctx_is_temporary = ctx_needs_reset = true;
m = map_mft_record(base_ni);
if (IS_ERR(m))
return PTR_ERR(m);
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
} else {
VCN allocated_size_vcn;
BUG_ON(IS_ERR(ctx->mrec));
a = ctx->attr;
BUG_ON(!a->non_resident);
ctx_is_temporary = false;
end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
read_lock_irqsave(&ni->size_lock, flags);
allocated_size_vcn = ni->allocated_size >>
ni->vol->cluster_size_bits;
read_unlock_irqrestore(&ni->size_lock, flags);
if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
end_vcn = allocated_size_vcn - 1;
/*
* If we already have the attribute extent containing @vcn in
* @ctx, no need to look it up again. We slightly cheat in
* that if vcn exceeds the allocated size, we will refuse to
* map the runlist below, so there is definitely no need to get
* the right attribute extent.
*/
if (vcn >= allocated_size_vcn || (a->type == ni->type &&
a->name_length == ni->name_len &&
!memcmp((u8*)a + le16_to_cpu(a->name_offset),
ni->name, ni->name_len) &&
sle64_to_cpu(a->data.non_resident.lowest_vcn)
<= vcn && end_vcn >= vcn))
ctx_needs_reset = false;
else {
/* Save the old search context. */
old_ctx = *ctx;
/*
* If the currently mapped (extent) inode is not the
* base inode we will unmap it when we reinitialize the
* search context which means we need to get a
* reference to the page containing the mapped mft
* record so we do not accidentally drop changes to the
* mft record when it has not been marked dirty yet.
*/
if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
old_ctx.base_ntfs_ino) {
put_this_page = old_ctx.ntfs_ino->page;
get_page(put_this_page);
}
/*
* Reinitialize the search context so we can lookup the
* needed attribute extent.
*/
ntfs_attr_reinit_search_ctx(ctx);
ctx_needs_reset = true;
}
}
if (ctx_needs_reset) {
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, vcn, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
BUG_ON(!ctx->attr->non_resident);
}
a = ctx->attr;
/*
* Only decompress the mapping pairs if @vcn is inside it. Otherwise
* we get into problems when we try to map an out of bounds vcn because
* we then try to map the already mapped runlist fragment and
* ntfs_mapping_pairs_decompress() fails.
*/
end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
if (unlikely(vcn && vcn >= end_vcn)) {
err = -ENOENT;
goto err_out;
}
rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
if (IS_ERR(rl))
err = PTR_ERR(rl);
else
ni->runlist.rl = rl;
err_out:
if (ctx_is_temporary) {
if (likely(ctx))
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
} else if (ctx_needs_reset) {
/*
* If there is no attribute list, restoring the search context
* is accomplished simply by copying the saved context back over
* the caller supplied context. If there is an attribute list,
* things are more complicated as we need to deal with mapping
* of mft records and resulting potential changes in pointers.
*/
if (NInoAttrList(base_ni)) {
/*
* If the currently mapped (extent) inode is not the
* one we had before, we need to unmap it and map the
* old one.
*/
if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
/*
* If the currently mapped inode is not the
* base inode, unmap it.
*/
if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
ctx->base_ntfs_ino) {
unmap_extent_mft_record(ctx->ntfs_ino);
ctx->mrec = ctx->base_mrec;
BUG_ON(!ctx->mrec);
}
/*
* If the old mapped inode is not the base
* inode, map it.
*/
if (old_ctx.base_ntfs_ino &&
old_ctx.ntfs_ino !=
old_ctx.base_ntfs_ino) {
retry_map:
ctx->mrec = map_mft_record(
old_ctx.ntfs_ino);
/*
* Something bad has happened. If out
* of memory retry till it succeeds.
* Any other errors are fatal and we
* return the error code in ctx->mrec.
* Let the caller deal with it... We
* just need to fudge things so the
* caller can reinit and/or put the
* search context safely.
*/
if (IS_ERR(ctx->mrec)) {
if (PTR_ERR(ctx->mrec) ==
-ENOMEM) {
schedule();
goto retry_map;
} else
old_ctx.ntfs_ino =
old_ctx.
base_ntfs_ino;
}
}
}
/* Update the changed pointers in the saved context. */
if (ctx->mrec != old_ctx.mrec) {
if (!IS_ERR(ctx->mrec))
old_ctx.attr = (ATTR_RECORD*)(
(u8*)ctx->mrec +
((u8*)old_ctx.attr -
(u8*)old_ctx.mrec));
old_ctx.mrec = ctx->mrec;
}
}
/* Restore the search context to the saved one. */
*ctx = old_ctx;
/*
* We drop the reference on the page we took earlier. In the
* case that IS_ERR(ctx->mrec) is true this means we might lose
* some changes to the mft record that had been made between
* the last time it was marked dirty/written out and now. This
* at this stage is not a problem as the mapping error is fatal
* enough that the mft record cannot be written out anyway and
* the caller is very likely to shutdown the whole inode
* immediately and mark the volume dirty for chkdsk to pick up
* the pieces anyway.
*/
if (put_this_page)
put_page(put_this_page);
}
return err;
}