8968 lines
326 KiB
Plaintext
8968 lines
326 KiB
Plaintext
package rocks.palaiologos.cask;
|
|
|
|
import java.io.IOException;
|
|
import java.io.InputStream;
|
|
import java.util.HashMap;
|
|
import java.util.Objects;
|
|
|
|
public class CaskBootstrap {
|
|
public static void main(String[] args) {
|
|
InputStream manifest = CaskBootstrap.class.getClassLoader().getResourceAsStream();
|
|
if(manifest == null) {
|
|
throw new RuntimeException();
|
|
}
|
|
String data;
|
|
try {
|
|
data = new String(manifest.readAllBytes());
|
|
manifest.close();
|
|
} catch (IOException e) {
|
|
throw new RuntimeException();
|
|
}
|
|
// Primarily just future-proofing.
|
|
HashMap<String, String> manifestMap = new HashMap<>();
|
|
String[] properties = data.replace();
|
|
for (String property : properties) {
|
|
int index = property.indexOf();
|
|
if (index == -1) {
|
|
throw new RuntimeException( + property);
|
|
}
|
|
manifestMap.put(property.substring(0, index).trim(), property.substring(index + 1).trim());
|
|
}
|
|
|
|
String mainClass = manifestMap.get();
|
|
String caskFile = manifestMap.get();
|
|
if (mainClass == null || caskFile == null) {
|
|
throw new RuntimeException();
|
|
}
|
|
|
|
try {
|
|
CaskClassLoader caskClassLoader = new CaskClassLoader(Objects.requireNonNull(CaskBootstrap.class.getClassLoader().getResourceAsStream(caskFile)));
|
|
Class<?> mainClassObject = caskClassLoader.loadClass(mainClass);
|
|
Thread.currentThread().setContextClassLoader(caskClassLoader);
|
|
System.setProperty(, CaskClassLoader.class.getName());
|
|
mainClassObject.getMethod(, String[].class).invoke(null, (Object) args);
|
|
} catch (Exception e) {
|
|
throw new RuntimeException(, e);
|
|
}
|
|
}
|
|
}
|
|
|
|
package palaiologos.kamilalisp.runtime.array;
|
|
|
|
import com.google.common.collect.Lists;
|
|
import palaiologos.kamilalisp.atom.Atom;
|
|
import palaiologos.kamilalisp.atom.Environment;
|
|
import palaiologos.kamilalisp.atom.Lambda;
|
|
import palaiologos.kamilalisp.atom.PrimitiveFunction;
|
|
|
|
import java.math.BigInteger;
|
|
import java.util.ArrayList;
|
|
import java.util.List;
|
|
|
|
public class Encode extends PrimitiveFunction implements Lambda {
|
|
@Override
|
|
public Atom apply(Environment env, List<Atom> args) {
|
|
assertArity(args, 2);
|
|
BigInteger base = args.get(0).getInteger();
|
|
BigInteger n = args.get(1).getInteger();
|
|
List<Atom> encoding = new ArrayList<>();
|
|
while (n.compareTo(BigInteger.ZERO) > 0) {
|
|
encoding.add(new Atom(n.mod(base)));
|
|
n = n.divide(base);
|
|
}
|
|
if (encoding.isEmpty())
|
|
encoding.add(new Atom(BigInteger.ZERO));
|
|
return new Atom(Lists.reverse(encoding));
|
|
}
|
|
|
|
@Override
|
|
protected String name() {
|
|
return ;
|
|
}
|
|
}
|
|
|
|
package palaiologos.kamilalisp.runtime.net;
|
|
|
|
import palaiologos.kamilalisp.atom.Atom;
|
|
import palaiologos.kamilalisp.atom.Environment;
|
|
import palaiologos.kamilalisp.atom.Lambda;
|
|
import palaiologos.kamilalisp.atom.PrimitiveFunction;
|
|
import palaiologos.kamilalisp.runtime.dataformat.BufferAtomList;
|
|
|
|
import java.io.InputStream;
|
|
import java.net.URL;
|
|
import java.util.List;
|
|
|
|
public class Wget extends PrimitiveFunction implements Lambda {
|
|
@Override
|
|
public Atom apply(Environment env, List<Atom> args) {
|
|
assertArity(args, 1);
|
|
try {
|
|
URL url = new URL(args.get(0).getString());
|
|
InputStream data = url.openStream();
|
|
byte[] bytes = data.readAllBytes();
|
|
data.close();
|
|
return new Atom(BufferAtomList.from(bytes));
|
|
} catch (Exception e) {
|
|
throw new RuntimeException(e);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
protected String name() {
|
|
return ;
|
|
}
|
|
}
|
|
|
|
package mindustry.net;
|
|
|
|
import arc.*;
|
|
import arc.func.*;
|
|
import arc.math.*;
|
|
import arc.net.*;
|
|
import arc.net.FrameworkMessage.*;
|
|
import arc.net.dns.*;
|
|
import arc.struct.*;
|
|
import arc.util.*;
|
|
import arc.util.Log.*;
|
|
import arc.util.io.*;
|
|
import mindustry.*;
|
|
import mindustry.game.EventType.*;
|
|
import mindustry.net.Administration.*;
|
|
import mindustry.net.Net.*;
|
|
import mindustry.net.Packets.*;
|
|
import net.jpountz.lz4.*;
|
|
|
|
import java.io.*;
|
|
import java.net.*;
|
|
import java.nio.*;
|
|
import java.nio.channels.*;
|
|
import java.util.concurrent.*;
|
|
|
|
import static mindustry.Vars.*;
|
|
|
|
public class ArcNetProvider implements NetProvider{
|
|
final Client client;
|
|
final Prov<DatagramPacket> packetSupplier = () -> new DatagramPacket(new byte[512], 512);
|
|
|
|
final Server server;
|
|
final CopyOnWriteArrayList<ArcConnection> connections = new CopyOnWriteArrayList<>();
|
|
Thread serverThread;
|
|
|
|
private static final LZ4FastDecompressor decompressor = LZ4Factory.fastestInstance().fastDecompressor();
|
|
private static final LZ4Compressor compressor = LZ4Factory.fastestInstance().fastCompressor();
|
|
|
|
private volatile int playerLimitCache, packetSpamLimit;
|
|
|
|
public ArcNetProvider(){
|
|
ArcNet.errorHandler = e -> {
|
|
if(Log.level == LogLevel.debug){
|
|
Log.debug(Strings.getStackTrace(e));
|
|
}
|
|
};
|
|
|
|
//fetch this in the main thread to prevent threading issues
|
|
Events.run(Trigger.update, () -> {
|
|
playerLimitCache = netServer.admins.getPlayerLimit();
|
|
packetSpamLimit = Config.packetSpamLimit.num();
|
|
});
|
|
|
|
client = new Client(8192, 16384, new PacketSerializer());
|
|
client.setDiscoveryPacket(packetSupplier);
|
|
client.addListener(new NetListener(){
|
|
@Override
|
|
public void connected(Connection connection){
|
|
Connect c = new Connect();
|
|
c.addressTCP = connection.getRemoteAddressTCP().getAddress().getHostAddress();
|
|
if(connection.getRemoteAddressTCP() != null) c.addressTCP = connection.getRemoteAddressTCP().toString();
|
|
|
|
Core.app.post(() -> net.handleClientReceived(c));
|
|
}
|
|
|
|
@Override
|
|
public void disconnected(Connection connection, DcReason reason){
|
|
if(connection.getLastProtocolError() != null){
|
|
netClient.setQuiet();
|
|
}
|
|
|
|
Disconnect c = new Disconnect();
|
|
c.reason = reason.toString();
|
|
Core.app.post(() -> net.handleClientReceived(c));
|
|
}
|
|
|
|
@Override
|
|
public void received(Connection connection, Object object){
|
|
if(!(object instanceof Packet p)) return;
|
|
|
|
Core.app.post(() -> {
|
|
try{
|
|
net.handleClientReceived(p);
|
|
}catch(Throwable e){
|
|
net.handleException(e);
|
|
}
|
|
});
|
|
|
|
}
|
|
});
|
|
|
|
server = new Server(32768, 16384, new PacketSerializer());
|
|
server.setMulticast(multicastGroup, multicastPort);
|
|
server.setDiscoveryHandler((address, handler) -> {
|
|
ByteBuffer buffer = NetworkIO.writeServerData();
|
|
buffer.position(0);
|
|
handler.respond(buffer);
|
|
});
|
|
|
|
server.addListener(new NetListener(){
|
|
|
|
@Override
|
|
public void connected(Connection connection){
|
|
String ip = connection.getRemoteAddressTCP().getAddress().getHostAddress();
|
|
|
|
//kill connections above the limit to prevent spam
|
|
if((playerLimitCache > 0 && server.getConnections().length > playerLimitCache) || netServer.admins.isDosBlacklisted(ip)){
|
|
connection.close(DcReason.closed);
|
|
return;
|
|
}
|
|
|
|
ArcConnection kn = new ArcConnection(ip, connection);
|
|
|
|
Connect c = new Connect();
|
|
c.addressTCP = ip;
|
|
|
|
Log.debug(, c.addressTCP);
|
|
|
|
connection.setArbitraryData(kn);
|
|
connections.add(kn);
|
|
Core.app.post(() -> net.handleServerReceived(kn, c));
|
|
}
|
|
|
|
@Override
|
|
public void disconnected(Connection connection, DcReason reason){
|
|
if(!(connection.getArbitraryData() instanceof ArcConnection k)) return;
|
|
|
|
Disconnect c = new Disconnect();
|
|
c.reason = reason.toString();
|
|
|
|
Core.app.post(() -> {
|
|
net.handleServerReceived(k, c);
|
|
connections.remove(k);
|
|
});
|
|
}
|
|
|
|
@Override
|
|
public void received(Connection connection, Object object){
|
|
if(!(connection.getArbitraryData() instanceof ArcConnection k) || !(object instanceof Packet pack)) return;
|
|
|
|
if(packetSpamLimit > 0 && !k.packetRate.allow(3000, packetSpamLimit)){
|
|
Log.warn(, k.address);
|
|
connection.close(DcReason.closed);
|
|
netServer.admins.blacklistDos(k.address);
|
|
return;
|
|
}
|
|
|
|
Core.app.post(() -> {
|
|
try{
|
|
net.handleServerReceived(k, pack);
|
|
}catch(Throwable e){
|
|
Log.err(e);
|
|
}
|
|
});
|
|
}
|
|
});
|
|
}
|
|
|
|
@Override
|
|
public void setConnectFilter(Server.ServerConnectFilter connectFilter){
|
|
server.setConnectFilter(connectFilter);
|
|
}
|
|
|
|
private static boolean isLocal(InetAddress addr){
|
|
if(addr.isAnyLocalAddress() || addr.isLoopbackAddress()) return true;
|
|
|
|
try{
|
|
return NetworkInterface.getByInetAddress(addr) != null;
|
|
}catch(Exception e){
|
|
return false;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void connectClient(String ip, int port, Runnable success){
|
|
Threads.daemon(() -> {
|
|
try{
|
|
//just in case
|
|
client.stop();
|
|
|
|
Threads.daemon(, () -> {
|
|
try{
|
|
client.run();
|
|
}catch(Exception e){
|
|
if(!(e instanceof ClosedSelectorException)) net.handleException(e);
|
|
}
|
|
});
|
|
|
|
client.connect(5000, ip, port, port);
|
|
success.run();
|
|
}catch(Exception e){
|
|
if(netClient.isConnecting()){
|
|
net.handleException(e);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
@Override
|
|
public void disconnectClient(){
|
|
client.close();
|
|
}
|
|
|
|
@Override
|
|
public void sendClient(Object object, boolean reliable){
|
|
try{
|
|
if(reliable){
|
|
client.sendTCP(object);
|
|
}else{
|
|
client.sendUDP(object);
|
|
}
|
|
//sending things can cause an under/overflow, catch it and disconnect instead of crashing
|
|
}catch(BufferOverflowException | BufferUnderflowException e){
|
|
net.showError(e);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void pingHost(String address, int port, Cons<Host> valid, Cons<Exception> invalid){
|
|
try{
|
|
var host = pingHostImpl(address, port);
|
|
Core.app.post(() -> valid.get(host));
|
|
}catch(IOException e){
|
|
if(port == Vars.port){
|
|
for(var record : ArcDns.getSrvRecords( + address)){
|
|
try{
|
|
var host = pingHostImpl(record.target, record.port);
|
|
Core.app.post(() -> valid.get(host));
|
|
return;
|
|
}catch(IOException ignored){
|
|
}
|
|
}
|
|
}
|
|
Core.app.post(() -> invalid.get(e));
|
|
}
|
|
}
|
|
|
|
private Host pingHostImpl(String address, int port) throws IOException{
|
|
try(DatagramSocket socket = new DatagramSocket()){
|
|
long time = Time.millis();
|
|
|
|
socket.send(new DatagramPacket(new byte[]{-2, 1}, 2, InetAddress.getByName(address), port));
|
|
socket.setSoTimeout(2000);
|
|
|
|
DatagramPacket packet = packetSupplier.get();
|
|
socket.receive(packet);
|
|
|
|
ByteBuffer buffer = ByteBuffer.wrap(packet.getData());
|
|
Host host = NetworkIO.readServerData((int)Time.timeSinceMillis(time), packet.getAddress().getHostAddress(), buffer);
|
|
host.port = port;
|
|
return host;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void discoverServers(Cons<Host> callback, Runnable done){
|
|
Seq<InetAddress> foundAddresses = new Seq<>();
|
|
long time = Time.millis();
|
|
|
|
client.discoverHosts(port, multicastGroup, multicastPort, 3000, packet -> {
|
|
synchronized(foundAddresses){
|
|
try{
|
|
if(foundAddresses.contains(address -> address.equals(packet.getAddress()) || (isLocal(address) && isLocal(packet.getAddress())))){
|
|
return;
|
|
}
|
|
ByteBuffer buffer = ByteBuffer.wrap(packet.getData());
|
|
Host host = NetworkIO.readServerData((int)Time.timeSinceMillis(time), packet.getAddress().getHostAddress(), buffer);
|
|
Core.app.post(() -> callback.get(host));
|
|
foundAddresses.add(packet.getAddress());
|
|
}catch(Exception e){
|
|
//don't crash when there's an error pinging a server or parsing data
|
|
e.printStackTrace();
|
|
}
|
|
}
|
|
}, () -> Core.app.post(done));
|
|
}
|
|
|
|
@Override
|
|
public void dispose(){
|
|
disconnectClient();
|
|
closeServer();
|
|
try{
|
|
client.dispose();
|
|
}catch(IOException ignored){
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public Iterable<ArcConnection> getConnections(){
|
|
return connections;
|
|
}
|
|
|
|
@Override
|
|
public void hostServer(int port) throws IOException{
|
|
connections.clear();
|
|
server.bind(port, port);
|
|
|
|
serverThread = new Thread(() -> {
|
|
try{
|
|
server.run();
|
|
}catch(Throwable e){
|
|
if(!(e instanceof ClosedSelectorException)) Threads.throwAppException(e);
|
|
}
|
|
}, );
|
|
serverThread.setDaemon(true);
|
|
serverThread.start();
|
|
}
|
|
|
|
@Override
|
|
public void closeServer(){
|
|
connections.clear();
|
|
mainExecutor.submit(server::stop);
|
|
}
|
|
|
|
class ArcConnection extends NetConnection{
|
|
public final Connection connection;
|
|
|
|
public ArcConnection(String address, Connection connection){
|
|
super(address);
|
|
this.connection = connection;
|
|
}
|
|
|
|
@Override
|
|
public boolean isConnected(){
|
|
return connection.isConnected();
|
|
}
|
|
|
|
@Override
|
|
public void sendStream(Streamable stream){
|
|
connection.addListener(new InputStreamSender(stream.stream, 512){
|
|
int id;
|
|
|
|
@Override
|
|
protected void start(){
|
|
//send an object so the receiving side knows how to handle the following chunks
|
|
StreamBegin begin = new StreamBegin();
|
|
begin.total = stream.stream.available();
|
|
begin.type = Net.getPacketId(stream);
|
|
connection.sendTCP(begin);
|
|
id = begin.id;
|
|
}
|
|
|
|
@Override
|
|
protected Object next(byte[] bytes){
|
|
StreamChunk chunk = new StreamChunk();
|
|
chunk.id = id;
|
|
chunk.data = bytes;
|
|
return chunk; //wrap the byte[] with an object so the receiving side knows how to handle it.
|
|
}
|
|
});
|
|
}
|
|
|
|
@Override
|
|
public void send(Object object, boolean reliable){
|
|
try{
|
|
if(reliable){
|
|
connection.sendTCP(object);
|
|
}else{
|
|
connection.sendUDP(object);
|
|
}
|
|
}catch(Exception e){
|
|
Log.err(e);
|
|
Log.info();
|
|
connection.close(DcReason.error);
|
|
|
|
if(connection.getArbitraryData() instanceof ArcConnection k){
|
|
connections.remove(k);
|
|
}
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void close(){
|
|
if(connection.isConnected()) connection.close(DcReason.closed);
|
|
}
|
|
}
|
|
|
|
public static class PacketSerializer implements NetSerializer{
|
|
//for debugging total read/write speeds
|
|
private static final boolean debug = false;
|
|
|
|
ThreadLocal<ByteBuffer> decompressBuffer = Threads.local(() -> ByteBuffer.allocate(32768));
|
|
ThreadLocal<Reads> reads = Threads.local(() -> new Reads(new ByteBufferInput(decompressBuffer.get())));
|
|
ThreadLocal<Writes> writes = Threads.local(() -> new Writes(new ByteBufferOutput(decompressBuffer.get())));
|
|
|
|
//for debugging network write counts
|
|
static WindowedMean upload = new WindowedMean(5), download = new WindowedMean(5);
|
|
static long lastUpload, lastDownload, uploadAccum, downloadAccum;
|
|
static int lastPos;
|
|
|
|
@Override
|
|
public Object read(ByteBuffer byteBuffer){
|
|
if(debug){
|
|
if(Time.timeSinceMillis(lastDownload) >= 1000){
|
|
lastDownload = Time.millis();
|
|
download.add(downloadAccum);
|
|
downloadAccum = 0;
|
|
Log.info(, download.mean());
|
|
}
|
|
downloadAccum += byteBuffer.remaining();
|
|
}
|
|
|
|
byte id = byteBuffer.get();
|
|
if(id == -2){
|
|
return readFramework(byteBuffer);
|
|
}else{
|
|
//read length int, followed by compressed lz4 data
|
|
Packet packet = Net.newPacket(id);
|
|
var buffer = decompressBuffer.get();
|
|
int length = byteBuffer.getShort() & 0xffff;
|
|
byte compression = byteBuffer.get();
|
|
|
|
//no compression, copy over buffer
|
|
if(compression == 0){
|
|
buffer.position(0).limit(length);
|
|
buffer.put(byteBuffer.array(), byteBuffer.position(), length);
|
|
buffer.position(0);
|
|
packet.read(reads.get(), length);
|
|
//move read packets forward
|
|
byteBuffer.position(byteBuffer.position() + buffer.position());
|
|
}else{
|
|
//decompress otherwise
|
|
int read = decompressor.decompress(byteBuffer, byteBuffer.position(), buffer, 0, length);
|
|
|
|
buffer.position(0);
|
|
buffer.limit(length);
|
|
packet.read(reads.get(), length);
|
|
//move buffer forward based on bytes read by decompressor
|
|
byteBuffer.position(byteBuffer.position() + read);
|
|
}
|
|
|
|
return packet;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void write(ByteBuffer byteBuffer, Object o){
|
|
if(debug){
|
|
lastPos = byteBuffer.position();
|
|
}
|
|
|
|
//write raw buffer
|
|
if(o instanceof ByteBuffer raw){
|
|
byteBuffer.put(raw);
|
|
}else if(o instanceof FrameworkMessage msg){
|
|
byteBuffer.put((byte)-2); //code for framework message
|
|
writeFramework(byteBuffer, msg);
|
|
}else{
|
|
if(!(o instanceof Packet pack)) throw new RuntimeException( + o.getClass());
|
|
byte id = Net.getPacketId(pack);
|
|
byteBuffer.put(id);
|
|
|
|
var temp = decompressBuffer.get();
|
|
temp.position(0);
|
|
temp.limit(temp.capacity());
|
|
pack.write(writes.get());
|
|
|
|
short length = (short)temp.position();
|
|
|
|
//write length, uncompressed
|
|
byteBuffer.putShort(length);
|
|
|
|
//don't bother with small packets
|
|
if(length < 36 || pack instanceof StreamChunk){
|
|
//write direct contents...
|
|
byteBuffer.put((byte)0); //0 = no compression
|
|
byteBuffer.put(temp.array(), 0, length);
|
|
}else{
|
|
byteBuffer.put((byte)1); //1 = compression
|
|
//write compressed data; this does not modify position!
|
|
int written = compressor.compress(temp, 0, temp.position(), byteBuffer, byteBuffer.position(), byteBuffer.remaining());
|
|
//skip to indicate the written, compressed data
|
|
byteBuffer.position(byteBuffer.position() + written);
|
|
}
|
|
}
|
|
|
|
if(debug){
|
|
if(Time.timeSinceMillis(lastUpload) >= 1000){
|
|
lastUpload = Time.millis();
|
|
upload.add(uploadAccum);
|
|
uploadAccum = 0;
|
|
Log.info(, upload.mean());
|
|
}
|
|
uploadAccum += byteBuffer.position() - lastPos;
|
|
}
|
|
}
|
|
|
|
public void writeFramework(ByteBuffer buffer, FrameworkMessage message){
|
|
if(message instanceof Ping p){
|
|
buffer.put((byte)0);
|
|
buffer.putInt(p.id);
|
|
buffer.put(p.isReply ? 1 : (byte)0);
|
|
}else if(message instanceof DiscoverHost){
|
|
buffer.put((byte)1);
|
|
}else if(message instanceof KeepAlive){
|
|
buffer.put((byte)2);
|
|
}else if(message instanceof RegisterUDP p){
|
|
buffer.put((byte)3);
|
|
buffer.putInt(p.connectionID);
|
|
}else if(message instanceof RegisterTCP p){
|
|
buffer.put((byte)4);
|
|
buffer.putInt(p.connectionID);
|
|
}
|
|
}
|
|
|
|
public FrameworkMessage readFramework(ByteBuffer buffer){
|
|
byte id = buffer.get();
|
|
|
|
if(id == 0){
|
|
Ping p = new Ping();
|
|
p.id = buffer.getInt();
|
|
p.isReply = buffer.get() == 1;
|
|
return p;
|
|
}else if(id == 1){
|
|
return FrameworkMessage.discoverHost;
|
|
}else if(id == 2){
|
|
return FrameworkMessage.keepAlive;
|
|
}else if(id == 3){
|
|
RegisterUDP p = new RegisterUDP();
|
|
p.connectionID = buffer.getInt();
|
|
return p;
|
|
}else if(id == 4){
|
|
RegisterTCP p = new RegisterTCP();
|
|
p.connectionID = buffer.getInt();
|
|
return p;
|
|
}else{
|
|
throw new RuntimeException();
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
package mindustry.net;
|
|
|
|
import mindustry.net.Packets.*;
|
|
|
|
import java.io.*;
|
|
|
|
public class Streamable extends Packet{
|
|
public transient ByteArrayInputStream stream;
|
|
|
|
@Override
|
|
public int getPriority(){
|
|
return priorityHigh;
|
|
}
|
|
|
|
public static class StreamBuilder{
|
|
public final int id;
|
|
public final byte type;
|
|
public final int total;
|
|
public final ByteArrayOutputStream stream = new ByteArrayOutputStream();
|
|
|
|
public StreamBuilder(StreamBegin begin){
|
|
id = begin.id;
|
|
type = begin.type;
|
|
total = begin.total;
|
|
}
|
|
|
|
public float progress(){
|
|
return (float)stream.size() / total;
|
|
}
|
|
|
|
public void add(byte[] bytes){
|
|
try{
|
|
stream.write(bytes);
|
|
}catch(IOException e){
|
|
throw new RuntimeException(e);
|
|
}
|
|
}
|
|
|
|
public Streamable build(){
|
|
Streamable s = Net.newPacket(type);
|
|
s.stream = new ByteArrayInputStream(stream.toByteArray());
|
|
return s;
|
|
}
|
|
|
|
public boolean isDone(){
|
|
return stream.size() >= total;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* Portions Copyright (c) 1995 Colin Plumb. All rights reserved.
|
|
*/
|
|
|
|
package java.math;
|
|
|
|
import java.io.IOException;
|
|
import java.io.InvalidObjectException;
|
|
import java.io.ObjectInputStream;
|
|
import java.io.ObjectOutputStream;
|
|
import java.io.ObjectStreamField;
|
|
import java.io.ObjectStreamException;
|
|
import java.util.Arrays;
|
|
import java.util.Objects;
|
|
import java.util.Random;
|
|
import java.util.concurrent.ForkJoinPool;
|
|
import java.util.concurrent.ForkJoinWorkerThread;
|
|
import java.util.concurrent.RecursiveTask;
|
|
import java.util.concurrent.ThreadLocalRandom;
|
|
|
|
import jdk.internal.math.DoubleConsts;
|
|
import jdk.internal.math.FloatConsts;
|
|
import jdk.internal.vm.annotation.ForceInline;
|
|
import jdk.internal.vm.annotation.IntrinsicCandidate;
|
|
import jdk.internal.vm.annotation.Stable;
|
|
|
|
/**
|
|
* Immutable arbitrary-precision integers. All operations behave as if
|
|
* BigIntegers were represented in two's-complement notation (like Java's
|
|
* primitive integer types). BigInteger provides analogues to all of Java's
|
|
* primitive integer operators, and all relevant methods from java.lang.Math.
|
|
* Additionally, BigInteger provides operations for modular arithmetic, GCD
|
|
* calculation, primality testing, prime generation, bit manipulation,
|
|
* and a few other miscellaneous operations.
|
|
*
|
|
* <p>Semantics of arithmetic operations exactly mimic those of Java's integer
|
|
* arithmetic operators, as defined in <i>The Java Language Specification</i>.
|
|
* For example, division by zero throws an {@code ArithmeticException}, and
|
|
* division of a negative by a positive yields a negative (or zero) remainder.
|
|
*
|
|
* <p>Semantics of shift operations extend those of Java's shift operators
|
|
* to allow for negative shift distances. A right-shift with a negative
|
|
* shift distance results in a left shift, and vice-versa. The unsigned
|
|
* right shift operator ({@code >>>}) is omitted since this operation
|
|
* only makes sense for a fixed sized word and not for a
|
|
* representation conceptually having an infinite number of leading
|
|
* virtual sign bits.
|
|
*
|
|
* <p>Semantics of bitwise logical operations exactly mimic those of Java's
|
|
* bitwise integer operators. The binary operators ({@code and},
|
|
* {@code or}, {@code xor}) implicitly perform sign extension on the shorter
|
|
* of the two operands prior to performing the operation.
|
|
*
|
|
* <p>Comparison operations perform signed integer comparisons, analogous to
|
|
* those performed by Java's relational and equality operators.
|
|
*
|
|
* <p>Modular arithmetic operations are provided to compute residues, perform
|
|
* exponentiation, and compute multiplicative inverses. These methods always
|
|
* return a non-negative result, between {@code 0} and {@code (modulus - 1)},
|
|
* inclusive.
|
|
*
|
|
* <p>Bit operations operate on a single bit of the two's-complement
|
|
* representation of their operand. If necessary, the operand is sign-extended
|
|
* so that it contains the designated bit. None of the single-bit
|
|
* operations can produce a BigInteger with a different sign from the
|
|
* BigInteger being operated on, as they affect only a single bit, and the
|
|
* arbitrarily large abstraction provided by this class ensures that conceptually
|
|
* there are infinitely many preceding each BigInteger.
|
|
*
|
|
* <p>For the sake of brevity and clarity, pseudo-code is used throughout the
|
|
* descriptions of BigInteger methods. The pseudo-code expression
|
|
* {@code (i + j)} is shorthand for "a BigInteger whose value is
|
|
* that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
|
|
* The pseudo-code expression {@code (i == j)} is shorthand for
|
|
* "{@code true} if and only if the BigInteger {@code i} represents the same
|
|
* value as the BigInteger {@code j}." Other pseudo-code expressions are
|
|
* interpreted similarly.
|
|
*
|
|
* <p>All methods and constructors in this class throw
|
|
* {@code NullPointerException} when passed
|
|
* a null object reference for any input parameter.
|
|
*
|
|
* BigInteger must support values in the range
|
|
* -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
|
|
* +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive)
|
|
* and may support values outside of that range.
|
|
*
|
|
* An {@code ArithmeticException} is thrown when a BigInteger
|
|
* constructor or method would generate a value outside of the
|
|
* supported range.
|
|
*
|
|
* The range of probable prime values is limited and may be less than
|
|
* the full supported positive range of {@code BigInteger}.
|
|
* The range must be at least 1 to 2<sup>500000000</sup>.
|
|
*
|
|
* @apiNote
|
|
* <a id=algorithmicComplexity>As {@code BigInteger} values are
|
|
* arbitrary precision integers, the algorithmic complexity of the
|
|
* methods of this class varies and may be superlinear in the size of
|
|
* the input. For example, a method like {@link intValue()} would be
|
|
* expected to run in <i>O</i>(1), that is constant time, since with
|
|
* the current internal representation only a fixed-size component of
|
|
* the {@code BigInteger} needs to be accessed to perform the
|
|
* conversion to {@code int}. In contrast, a method like {@link not()}
|
|
* would be expected to run in <i>O</i>(<i>n</i>) time where <i>n</i>
|
|
* is the size of the {@code BigInteger} in bits, that is, to run in
|
|
* time proportional to the size of the input. For multiplying two
|
|
* {@code BigInteger} values of size <i>n</i>, a naive multiplication
|
|
* algorithm would run in time <i>O</i>(<i>n<sup>2</sup></i>) and
|
|
* theoretical results indicate a multiplication algorithm for numbers
|
|
* using this category of representation must run in <em>at least</em>
|
|
* <i>O</i>(<i>n</i> log <i>n</i>). Common multiplication
|
|
* algorithms between the bounds of the naive and theoretical cases
|
|
* include the Karatsuba multiplication
|
|
* (<i>O</i>(<i>n<sup>1.585</sup></i>)) and 3-way Toom-Cook
|
|
* multiplication (<i>O</i>(<i>n<sup>1.465</sup></i>)).</a>
|
|
*
|
|
* <p>A particular implementation of {@link multiply(BigInteger)
|
|
* multiply} is free to switch between different algorithms for
|
|
* different inputs, such as to improve actual running time to produce
|
|
* the product by using simpler algorithms for smaller inputs even if
|
|
* the simpler algorithm has a larger asymptotic complexity.
|
|
*
|
|
* <p>Operations may also allocate and compute on intermediate
|
|
* results, potentially those allocations may be as large as in
|
|
* proportion to the running time of the algorithm.
|
|
*
|
|
* <p>Users of {@code BigInteger} concerned with bounding the running
|
|
* time or space of operations can screen out {@code BigInteger}
|
|
* values above a chosen magnitude.
|
|
*
|
|
* @implNote
|
|
* In the reference implementation, BigInteger constructors and
|
|
* operations throw {@code ArithmeticException} when the result is out
|
|
* of the supported range of
|
|
* -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
|
|
* +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive).
|
|
*
|
|
* @see BigDecimal
|
|
* @jls 4.2.2 Integer Operations
|
|
* @author Josh Bloch
|
|
* @author Michael McCloskey
|
|
* @author Alan Eliasen
|
|
* @author Timothy Buktu
|
|
* @since 1.1
|
|
*/
|
|
|
|
public class BigInteger extends Number implements Comparable<BigInteger> {
|
|
/**
|
|
* The signum of this BigInteger: -1 for negative, 0 for zero, or
|
|
* 1 for positive. Note that the BigInteger zero <em>must</em> have
|
|
* a signum of 0. This is necessary to ensures that there is exactly one
|
|
* representation for each BigInteger value.
|
|
*/
|
|
final int signum;
|
|
|
|
/**
|
|
* The magnitude of this BigInteger, in <i>big-endian</i> order: the
|
|
* zeroth element of this array is the most-significant int of the
|
|
* magnitude. The magnitude must be in that the most-significant
|
|
* int ({@code mag[0]}) must be non-zero. This is necessary to
|
|
* ensure that there is exactly one representation for each BigInteger
|
|
* value. Note that this implies that the BigInteger zero has a
|
|
* zero-length mag array.
|
|
*/
|
|
final int[] mag;
|
|
|
|
// The following fields are stable variables. A stable variable's value
|
|
// changes at most once from the default zero value to a non-zero stable
|
|
// value. A stable value is calculated lazily on demand.
|
|
|
|
/**
|
|
* One plus the bitCount of this BigInteger. This is a stable variable.
|
|
*
|
|
* @see #bitCount
|
|
*/
|
|
private int bitCountPlusOne;
|
|
|
|
/**
|
|
* One plus the bitLength of this BigInteger. This is a stable variable.
|
|
* (either value is acceptable).
|
|
*
|
|
* @see #bitLength()
|
|
*/
|
|
private int bitLengthPlusOne;
|
|
|
|
/**
|
|
* Two plus the lowest set bit of this BigInteger. This is a stable variable.
|
|
*
|
|
* @see #getLowestSetBit
|
|
*/
|
|
private int lowestSetBitPlusTwo;
|
|
|
|
/**
|
|
* Two plus the index of the lowest-order int in the magnitude of this
|
|
* BigInteger that contains a nonzero int. This is a stable variable. The
|
|
* least significant int has int-number 0, the next int in order of
|
|
* increasing significance has int-number 1, and so forth.
|
|
*
|
|
* <p>Note: never used for a BigInteger with a magnitude of zero.
|
|
*
|
|
* @see #firstNonzeroIntNum()
|
|
*/
|
|
private int firstNonzeroIntNumPlusTwo;
|
|
|
|
/**
|
|
* This mask is used to obtain the value of an int as if it were unsigned.
|
|
*/
|
|
static final long LONG_MASK = 0xffffffffL;
|
|
|
|
/**
|
|
* This constant limits {@code mag.length} of BigIntegers to the supported
|
|
* range.
|
|
*/
|
|
private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)
|
|
|
|
/**
|
|
* Bit lengths larger than this constant can cause overflow in searchLen
|
|
* calculation and in BitSieve.singleSearch method.
|
|
*/
|
|
private static final int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
|
|
|
|
/**
|
|
* The threshold value for using Karatsuba multiplication. If the number
|
|
* of ints in both mag arrays are greater than this number, then
|
|
* Karatsuba multiplication will be used. This value is found
|
|
* experimentally to work well.
|
|
*/
|
|
private static final int KARATSUBA_THRESHOLD = 80;
|
|
|
|
/**
|
|
* The threshold value for using 3-way Toom-Cook multiplication.
|
|
* If the number of ints in each mag array is greater than the
|
|
* Karatsuba threshold, and the number of ints in at least one of
|
|
* the mag arrays is greater than this threshold, then Toom-Cook
|
|
* multiplication will be used.
|
|
*/
|
|
private static final int TOOM_COOK_THRESHOLD = 240;
|
|
|
|
/**
|
|
* The threshold value for using Karatsuba squaring. If the number
|
|
* of ints in the number are larger than this value,
|
|
* Karatsuba squaring will be used. This value is found
|
|
* experimentally to work well.
|
|
*/
|
|
private static final int KARATSUBA_SQUARE_THRESHOLD = 128;
|
|
|
|
/**
|
|
* The threshold value for using Toom-Cook squaring. If the number
|
|
* of ints in the number are larger than this value,
|
|
* Toom-Cook squaring will be used. This value is found
|
|
* experimentally to work well.
|
|
*/
|
|
private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;
|
|
|
|
/**
|
|
* The threshold value for using Burnikel-Ziegler division. If the number
|
|
* of ints in the divisor are larger than this value, Burnikel-Ziegler
|
|
* division may be used. This value is found experimentally to work well.
|
|
*/
|
|
static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;
|
|
|
|
/**
|
|
* The offset value for using Burnikel-Ziegler division. If the number
|
|
* of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the
|
|
* number of ints in the dividend is greater than the number of ints in the
|
|
* divisor plus this value, Burnikel-Ziegler division will be used. This
|
|
* value is found experimentally to work well.
|
|
*/
|
|
static final int BURNIKEL_ZIEGLER_OFFSET = 40;
|
|
|
|
/**
|
|
* The threshold value for using Schoenhage recursive base conversion. If
|
|
* the number of ints in the number are larger than this value,
|
|
* the Schoenhage algorithm will be used. In practice, it appears that the
|
|
* Schoenhage routine is faster for any threshold down to 2, and is
|
|
* relatively flat for thresholds between 2-25, so this choice may be
|
|
* varied within this range for very small effect.
|
|
*/
|
|
private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
|
|
|
|
/**
|
|
* The threshold value for using squaring code to perform multiplication
|
|
* of a {@code BigInteger} instance by itself. If the number of ints in
|
|
* the number are larger than this value, {@code multiply(this)} will
|
|
* return {@code square()}.
|
|
*/
|
|
private static final int MULTIPLY_SQUARE_THRESHOLD = 20;
|
|
|
|
/**
|
|
* The threshold for using an intrinsic version of
|
|
* implMontgomeryXXX to perform Montgomery multiplication. If the
|
|
* number of ints in the number is more than this value we do not
|
|
* use the intrinsic.
|
|
*/
|
|
private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512;
|
|
|
|
|
|
// Constructors
|
|
|
|
/**
|
|
* Translates a byte sub-array containing the two's-complement binary
|
|
* representation of a BigInteger into a BigInteger. The sub-array is
|
|
* specified via an offset into the array and a length. The sub-array is
|
|
* assumed to be in <i>big-endian</i> byte-order: the most significant
|
|
* byte is the element at index {@code off}. The {@code val} array is
|
|
* assumed to be unchanged for the duration of the constructor call.
|
|
*
|
|
* An {@code IndexOutOfBoundsException} is thrown if the length of the array
|
|
* {@code val} is non-zero and either {@code off} is negative, {@code len}
|
|
* is negative, or {@code off+len} is greater than the length of
|
|
* {@code val}.
|
|
*
|
|
* @param val byte array containing a sub-array which is the big-endian
|
|
* two's-complement binary representation of a BigInteger.
|
|
* @param off the start offset of the binary representation.
|
|
* @param len the number of bytes to use.
|
|
* @throws NumberFormatException {@code val} is zero bytes long.
|
|
* @throws IndexOutOfBoundsException if the provided array offset and
|
|
* length would cause an index into the byte array to be
|
|
* negative or greater than or equal to the array length.
|
|
* @since 9
|
|
*/
|
|
public BigInteger(byte[] val, int off, int len) {
|
|
if (val.length == 0) {
|
|
throw new NumberFormatException();
|
|
}
|
|
Objects.checkFromIndexSize(off, len, val.length);
|
|
if (len == 0) {
|
|
mag = ZERO.mag;
|
|
signum = ZERO.signum;
|
|
return;
|
|
}
|
|
|
|
int b = val[off];
|
|
if (b < 0) {
|
|
mag = makePositive(b, val, off, len);
|
|
signum = -1;
|
|
} else {
|
|
mag = stripLeadingZeroBytes(b, val, off, len);
|
|
signum = (mag.length == 0 ? 0 : 1);
|
|
}
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Translates a byte array containing the two's-complement binary
|
|
* representation of a BigInteger into a BigInteger. The input array is
|
|
* assumed to be in <i>big-endian</i> byte-order: the most significant
|
|
* byte is in the zeroth element. The {@code val} array is assumed to be
|
|
* unchanged for the duration of the constructor call.
|
|
*
|
|
* @param val big-endian two's-complement binary representation of a
|
|
* BigInteger.
|
|
* @throws NumberFormatException {@code val} is zero bytes long.
|
|
*/
|
|
public BigInteger(byte[] val) {
|
|
this(val, 0, val.length);
|
|
}
|
|
|
|
/**
|
|
* This private constructor translates an int array containing the
|
|
* two's-complement binary representation of a BigInteger into a
|
|
* BigInteger. The input array is assumed to be in <i>big-endian</i>
|
|
* int-order: the most significant int is in the zeroth element. The
|
|
* {@code val} array is assumed to be unchanged for the duration of
|
|
* the constructor call.
|
|
*/
|
|
private BigInteger(int[] val) {
|
|
if (val.length == 0)
|
|
throw new NumberFormatException();
|
|
|
|
if (val[0] < 0) {
|
|
mag = makePositive(val);
|
|
signum = -1;
|
|
} else {
|
|
mag = trustedStripLeadingZeroInts(val);
|
|
signum = (mag.length == 0 ? 0 : 1);
|
|
}
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Translates the sign-magnitude representation of a BigInteger into a
|
|
* BigInteger. The sign is represented as an integer signum value: -1 for
|
|
* negative, 0 for zero, or 1 for positive. The magnitude is a sub-array of
|
|
* a byte array in <i>big-endian</i> byte-order: the most significant byte
|
|
* is the element at index {@code off}. A zero value of the length
|
|
* {@code len} is permissible, and will result in a BigInteger value of 0,
|
|
* whether signum is -1, 0 or 1. The {@code magnitude} array is assumed to
|
|
* be unchanged for the duration of the constructor call.
|
|
*
|
|
* An {@code IndexOutOfBoundsException} is thrown if the length of the array
|
|
* {@code magnitude} is non-zero and either {@code off} is negative,
|
|
* {@code len} is negative, or {@code off+len} is greater than the length of
|
|
* {@code magnitude}.
|
|
*
|
|
* @param signum signum of the number (-1 for negative, 0 for zero, 1
|
|
* for positive).
|
|
* @param magnitude big-endian binary representation of the magnitude of
|
|
* the number.
|
|
* @param off the start offset of the binary representation.
|
|
* @param len the number of bytes to use.
|
|
* @throws NumberFormatException {@code signum} is not one of the three
|
|
* legal values (-1, 0, and 1), or {@code signum} is 0 and
|
|
* {@code magnitude} contains one or more non-zero bytes.
|
|
* @throws IndexOutOfBoundsException if the provided array offset and
|
|
* length would cause an index into the byte array to be
|
|
* negative or greater than or equal to the array length.
|
|
* @since 9
|
|
*/
|
|
public BigInteger(int signum, byte[] magnitude, int off, int len) {
|
|
if (signum < -1 || signum > 1) {
|
|
throw(new NumberFormatException());
|
|
}
|
|
Objects.checkFromIndexSize(off, len, magnitude.length);
|
|
|
|
// stripLeadingZeroBytes() returns a zero length array if len == 0
|
|
this.mag = stripLeadingZeroBytes(magnitude, off, len);
|
|
|
|
if (this.mag.length == 0) {
|
|
this.signum = 0;
|
|
} else {
|
|
if (signum == 0)
|
|
throw(new NumberFormatException());
|
|
this.signum = signum;
|
|
}
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Translates the sign-magnitude representation of a BigInteger into a
|
|
* BigInteger. The sign is represented as an integer signum value: -1 for
|
|
* negative, 0 for zero, or 1 for positive. The magnitude is a byte array
|
|
* in <i>big-endian</i> byte-order: the most significant byte is the
|
|
* zeroth element. A zero-length magnitude array is permissible, and will
|
|
* result in a BigInteger value of 0, whether signum is -1, 0 or 1. The
|
|
* {@code magnitude} array is assumed to be unchanged for the duration of
|
|
* the constructor call.
|
|
*
|
|
* @param signum signum of the number (-1 for negative, 0 for zero, 1
|
|
* for positive).
|
|
* @param magnitude big-endian binary representation of the magnitude of
|
|
* the number.
|
|
* @throws NumberFormatException {@code signum} is not one of the three
|
|
* legal values (-1, 0, and 1), or {@code signum} is 0 and
|
|
* {@code magnitude} contains one or more non-zero bytes.
|
|
*/
|
|
public BigInteger(int signum, byte[] magnitude) {
|
|
this(signum, magnitude, 0, magnitude.length);
|
|
}
|
|
|
|
/**
|
|
* A constructor for internal use that translates the sign-magnitude
|
|
* representation of a BigInteger into a BigInteger. It checks the
|
|
* arguments and copies the magnitude so this constructor would be
|
|
* safe for external use. The {@code magnitude} array is assumed to be
|
|
* unchanged for the duration of the constructor call.
|
|
*/
|
|
private BigInteger(int signum, int[] magnitude) {
|
|
this.mag = stripLeadingZeroInts(magnitude);
|
|
|
|
if (signum < -1 || signum > 1)
|
|
throw(new NumberFormatException());
|
|
|
|
if (this.mag.length == 0) {
|
|
this.signum = 0;
|
|
} else {
|
|
if (signum == 0)
|
|
throw(new NumberFormatException());
|
|
this.signum = signum;
|
|
}
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Translates the String representation of a BigInteger in the
|
|
* specified radix into a BigInteger. The String representation
|
|
* consists of an optional minus or plus sign followed by a
|
|
* sequence of one or more digits in the specified radix. The
|
|
* character-to-digit mapping is provided by {@link
|
|
* Character#digit(char, int) Character.digit}. The String may
|
|
* not contain any extraneous characters (whitespace, for
|
|
* example).
|
|
*
|
|
* @param val String representation of BigInteger.
|
|
* @param radix radix to be used in interpreting {@code val}.
|
|
* @throws NumberFormatException {@code val} is not a valid representation
|
|
* of a BigInteger in the specified radix, or {@code radix} is
|
|
* outside the range from {@link Character#MIN_RADIX} to
|
|
* {@link Character#MAX_RADIX}, inclusive.
|
|
*/
|
|
public BigInteger(String val, int radix) {
|
|
int cursor = 0, numDigits;
|
|
final int len = val.length();
|
|
|
|
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
|
|
throw new NumberFormatException();
|
|
if (len == 0)
|
|
throw new NumberFormatException();
|
|
|
|
// Check for at most one leading sign
|
|
int sign = 1;
|
|
int index1 = val.lastIndexOf('-');
|
|
int index2 = val.lastIndexOf('+');
|
|
if (index1 >= 0) {
|
|
if (index1 != 0 || index2 >= 0) {
|
|
throw new NumberFormatException();
|
|
}
|
|
sign = -1;
|
|
cursor = 1;
|
|
} else if (index2 >= 0) {
|
|
if (index2 != 0) {
|
|
throw new NumberFormatException();
|
|
}
|
|
cursor = 1;
|
|
}
|
|
if (cursor == len)
|
|
throw new NumberFormatException();
|
|
|
|
// Skip leading zeros and compute number of digits in magnitude
|
|
while (cursor < len &&
|
|
Character.digit(val.charAt(cursor), radix) == 0) {
|
|
cursor++;
|
|
}
|
|
|
|
if (cursor == len) {
|
|
signum = 0;
|
|
mag = ZERO.mag;
|
|
return;
|
|
}
|
|
|
|
numDigits = len - cursor;
|
|
signum = sign;
|
|
|
|
// Pre-allocate array of expected size. May be too large but can
|
|
// never be too small. Typically exact.
|
|
long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1;
|
|
if (numBits + 31 >= (1L << 32)) {
|
|
reportOverflow();
|
|
}
|
|
int numWords = (int) (numBits + 31) >>> 5;
|
|
int[] magnitude = new int[numWords];
|
|
|
|
// Process first (potentially short) digit group
|
|
int firstGroupLen = numDigits % digitsPerInt[radix];
|
|
if (firstGroupLen == 0)
|
|
firstGroupLen = digitsPerInt[radix];
|
|
String group = val.substring(cursor, cursor += firstGroupLen);
|
|
magnitude[numWords - 1] = Integer.parseInt(group, radix);
|
|
if (magnitude[numWords - 1] < 0)
|
|
throw new NumberFormatException();
|
|
|
|
// Process remaining digit groups
|
|
int superRadix = intRadix[radix];
|
|
int groupVal = 0;
|
|
while (cursor < len) {
|
|
group = val.substring(cursor, cursor += digitsPerInt[radix]);
|
|
groupVal = Integer.parseInt(group, radix);
|
|
if (groupVal < 0)
|
|
throw new NumberFormatException();
|
|
destructiveMulAdd(magnitude, superRadix, groupVal);
|
|
}
|
|
// Required for cases where the array was overallocated.
|
|
mag = trustedStripLeadingZeroInts(magnitude);
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Constructs a new BigInteger using a char array with radix=10.
|
|
* Sign is precalculated outside and not allowed in the val. The {@code val}
|
|
* array is assumed to be unchanged for the duration of the constructor
|
|
* call.
|
|
*/
|
|
BigInteger(char[] val, int sign, int len) {
|
|
int cursor = 0, numDigits;
|
|
|
|
// Skip leading zeros and compute number of digits in magnitude
|
|
while (cursor < len && Character.digit(val[cursor], 10) == 0) {
|
|
cursor++;
|
|
}
|
|
if (cursor == len) {
|
|
signum = 0;
|
|
mag = ZERO.mag;
|
|
return;
|
|
}
|
|
|
|
numDigits = len - cursor;
|
|
signum = sign;
|
|
// Pre-allocate array of expected size
|
|
int numWords;
|
|
if (len < 10) {
|
|
numWords = 1;
|
|
} else {
|
|
long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1;
|
|
if (numBits + 31 >= (1L << 32)) {
|
|
reportOverflow();
|
|
}
|
|
numWords = (int) (numBits + 31) >>> 5;
|
|
}
|
|
int[] magnitude = new int[numWords];
|
|
|
|
// Process first (potentially short) digit group
|
|
int firstGroupLen = numDigits % digitsPerInt[10];
|
|
if (firstGroupLen == 0)
|
|
firstGroupLen = digitsPerInt[10];
|
|
magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen);
|
|
|
|
// Process remaining digit groups
|
|
while (cursor < len) {
|
|
int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
|
|
destructiveMulAdd(magnitude, intRadix[10], groupVal);
|
|
}
|
|
mag = trustedStripLeadingZeroInts(magnitude);
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
// Create an integer with the digits between the two indexes
|
|
// Assumes start < end. The result may be negative, but it
|
|
// is to be treated as an unsigned value.
|
|
private int parseInt(char[] source, int start, int end) {
|
|
int result = Character.digit(source[start++], 10);
|
|
if (result == -1)
|
|
throw new NumberFormatException(new String(source));
|
|
|
|
for (int index = start; index < end; index++) {
|
|
int nextVal = Character.digit(source[index], 10);
|
|
if (nextVal == -1)
|
|
throw new NumberFormatException(new String(source));
|
|
result = 10*result + nextVal;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// bitsPerDigit in the given radix times 1024
|
|
// Rounded up to avoid underallocation.
|
|
private static long bitsPerDigit[] = { 0, 0,
|
|
1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
|
|
3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
|
|
4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
|
|
5253, 5295};
|
|
|
|
// Multiply x array times word y in place, and add word z
|
|
private static void destructiveMulAdd(int[] x, int y, int z) {
|
|
// Perform the multiplication word by word
|
|
long ylong = y & LONG_MASK;
|
|
long zlong = z & LONG_MASK;
|
|
int len = x.length;
|
|
|
|
long product = 0;
|
|
long carry = 0;
|
|
for (int i = len-1; i >= 0; i--) {
|
|
product = ylong * (x[i] & LONG_MASK) + carry;
|
|
x[i] = (int)product;
|
|
carry = product >>> 32;
|
|
}
|
|
|
|
// Perform the addition
|
|
long sum = (x[len-1] & LONG_MASK) + zlong;
|
|
x[len-1] = (int)sum;
|
|
carry = sum >>> 32;
|
|
for (int i = len-2; i >= 0; i--) {
|
|
sum = (x[i] & LONG_MASK) + carry;
|
|
x[i] = (int)sum;
|
|
carry = sum >>> 32;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Translates the decimal String representation of a BigInteger
|
|
* into a BigInteger. The String representation consists of an
|
|
* optional minus or plus sign followed by a sequence of one or
|
|
* more decimal digits. The character-to-digit mapping is
|
|
* provided by {@link Character#digit(char, int)
|
|
* Character.digit}. The String may not contain any extraneous
|
|
* characters (whitespace, for example).
|
|
*
|
|
* @param val decimal String representation of BigInteger.
|
|
* @throws NumberFormatException {@code val} is not a valid representation
|
|
* of a BigInteger.
|
|
*/
|
|
public BigInteger(String val) {
|
|
this(val, 10);
|
|
}
|
|
|
|
/**
|
|
* Constructs a randomly generated BigInteger, uniformly distributed over
|
|
* the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
|
|
* The uniformity of the distribution assumes that a fair source of random
|
|
* bits is provided in {@code rnd}. Note that this constructor always
|
|
* constructs a non-negative BigInteger.
|
|
*
|
|
* @param numBits maximum bitLength of the new BigInteger.
|
|
* @param rnd source of randomness to be used in computing the new
|
|
* BigInteger.
|
|
* @throws IllegalArgumentException {@code numBits} is negative.
|
|
* @see #bitLength()
|
|
*/
|
|
public BigInteger(int numBits, Random rnd) {
|
|
byte[] magnitude = randomBits(numBits, rnd);
|
|
|
|
try {
|
|
// stripLeadingZeroBytes() returns a zero length array if len == 0
|
|
this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
|
|
|
|
if (this.mag.length == 0) {
|
|
this.signum = 0;
|
|
} else {
|
|
this.signum = 1;
|
|
}
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
} finally {
|
|
Arrays.fill(magnitude, (byte)0);
|
|
}
|
|
}
|
|
|
|
private static byte[] randomBits(int numBits, Random rnd) {
|
|
if (numBits < 0)
|
|
throw new IllegalArgumentException();
|
|
int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
|
|
byte[] randomBits = new byte[numBytes];
|
|
|
|
// Generate random bytes and mask out any excess bits
|
|
if (numBytes > 0) {
|
|
rnd.nextBytes(randomBits);
|
|
int excessBits = 8*numBytes - numBits;
|
|
randomBits[0] &= (byte)((1 << (8-excessBits)) - 1);
|
|
}
|
|
return randomBits;
|
|
}
|
|
|
|
/**
|
|
* Constructs a randomly generated positive BigInteger that is probably
|
|
* prime, with the specified bitLength.
|
|
*
|
|
* @apiNote It is recommended that the {@link #probablePrime probablePrime}
|
|
* method be used in preference to this constructor unless there
|
|
* is a compelling need to specify a certainty.
|
|
*
|
|
* @param bitLength bitLength of the returned BigInteger.
|
|
* @param certainty a measure of the uncertainty that the caller is
|
|
* willing to tolerate. The probability that the new BigInteger
|
|
* represents a prime number will exceed
|
|
* (1 - 1/2<sup>{@code certainty}</sup>). The execution time of
|
|
* this constructor is proportional to the value of this parameter.
|
|
* @param rnd source of random bits used to select candidates to be
|
|
* tested for primality.
|
|
* @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
|
|
* @see #bitLength()
|
|
*/
|
|
public BigInteger(int bitLength, int certainty, Random rnd) {
|
|
BigInteger prime;
|
|
|
|
if (bitLength < 2)
|
|
throw new ArithmeticException();
|
|
prime = (bitLength < SMALL_PRIME_THRESHOLD
|
|
? smallPrime(bitLength, certainty, rnd)
|
|
: largePrime(bitLength, certainty, rnd));
|
|
signum = 1;
|
|
mag = prime.mag;
|
|
}
|
|
|
|
// Minimum size in bits that the requested prime number has
|
|
// before we use the large prime number generating algorithms.
|
|
// The cutoff of 95 was chosen empirically for best performance.
|
|
private static final int SMALL_PRIME_THRESHOLD = 95;
|
|
|
|
// Certainty required to meet the spec of probablePrime
|
|
private static final int DEFAULT_PRIME_CERTAINTY = 100;
|
|
|
|
/**
|
|
* Returns a positive BigInteger that is probably prime, with the
|
|
* specified bitLength. The probability that a BigInteger returned
|
|
* by this method is composite does not exceed 2<sup>-100</sup>.
|
|
*
|
|
* @param bitLength bitLength of the returned BigInteger.
|
|
* @param rnd source of random bits used to select candidates to be
|
|
* tested for primality.
|
|
* @return a BigInteger of {@code bitLength} bits that is probably prime
|
|
* @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
|
|
* @see #bitLength()
|
|
* @since 1.4
|
|
*/
|
|
public static BigInteger probablePrime(int bitLength, Random rnd) {
|
|
if (bitLength < 2)
|
|
throw new ArithmeticException();
|
|
|
|
return (bitLength < SMALL_PRIME_THRESHOLD ?
|
|
smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
|
|
largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
|
|
}
|
|
|
|
/**
|
|
* Find a random number of the specified bitLength that is probably prime.
|
|
* This method is used for smaller primes, its performance degrades on
|
|
* larger bitlengths.
|
|
*
|
|
* This method assumes bitLength > 1.
|
|
*/
|
|
private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
|
|
int magLen = (bitLength + 31) >>> 5;
|
|
int temp[] = new int[magLen];
|
|
int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int
|
|
int highMask = (highBit << 1) - 1; // Bits to keep in high int
|
|
|
|
while (true) {
|
|
// Construct a candidate
|
|
for (int i=0; i < magLen; i++)
|
|
temp[i] = rnd.nextInt();
|
|
temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length
|
|
if (bitLength > 2)
|
|
temp[magLen-1] |= 1; // Make odd if bitlen > 2
|
|
|
|
BigInteger p = new BigInteger(temp, 1);
|
|
|
|
// Do cheap if applicable
|
|
if (bitLength > 6) {
|
|
long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
|
|
if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
|
|
(r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
|
|
(r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
|
|
continue; // Candidate is composite; try another
|
|
}
|
|
|
|
// All candidates of bitLength 2 and 3 are prime by this point
|
|
if (bitLength < 4)
|
|
return p;
|
|
|
|
// Do expensive test if we survive pre-test (or it's inapplicable)
|
|
if (p.primeToCertainty(certainty, rnd))
|
|
return p;
|
|
}
|
|
}
|
|
|
|
private static final BigInteger SMALL_PRIME_PRODUCT
|
|
= valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
|
|
|
|
/**
|
|
* Find a random number of the specified bitLength that is probably prime.
|
|
* This method is more appropriate for larger bitlengths since it uses
|
|
* a sieve to eliminate most composites before using a more expensive
|
|
* test.
|
|
*/
|
|
private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
|
|
BigInteger p;
|
|
p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
|
|
p.mag[p.mag.length-1] &= 0xfffffffe;
|
|
|
|
// Use a sieve length likely to contain the next prime number
|
|
int searchLen = getPrimeSearchLen(bitLength);
|
|
BitSieve searchSieve = new BitSieve(p, searchLen);
|
|
BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
|
|
|
|
while ((candidate == null) || (candidate.bitLength() != bitLength)) {
|
|
p = p.add(BigInteger.valueOf(2*searchLen));
|
|
if (p.bitLength() != bitLength)
|
|
p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
|
|
p.mag[p.mag.length-1] &= 0xfffffffe;
|
|
searchSieve = new BitSieve(p, searchLen);
|
|
candidate = searchSieve.retrieve(p, certainty, rnd);
|
|
}
|
|
return candidate;
|
|
}
|
|
|
|
/**
|
|
* Returns the first integer greater than this {@code BigInteger} that
|
|
* is probably prime. The probability that the number returned by this
|
|
* method is composite does not exceed 2<sup>-100</sup>. This method will
|
|
* never skip over a prime when searching: if it returns {@code p}, there
|
|
* is no prime {@code q} such that {@code this < q < p}.
|
|
*
|
|
* @return the first integer greater than this {@code BigInteger} that
|
|
* is probably prime.
|
|
* @throws ArithmeticException {@code this < 0} or {@code this} is too large.
|
|
* @implNote Due to the nature of the underlying algorithm,
|
|
* and depending on the size of {@code this},
|
|
* this method could consume a large amount of memory, up to
|
|
* exhaustion of available heap space, or could run for a long time.
|
|
* @since 1.5
|
|
*/
|
|
public BigInteger nextProbablePrime() {
|
|
if (this.signum < 0)
|
|
throw new ArithmeticException( + this);
|
|
|
|
// Handle trivial cases
|
|
if ((this.signum == 0) || this.equals(ONE))
|
|
return TWO;
|
|
|
|
BigInteger result = this.add(ONE);
|
|
|
|
// Fastpath for small numbers
|
|
if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
|
|
|
|
// Ensure an odd number
|
|
if (!result.testBit(0))
|
|
result = result.add(ONE);
|
|
|
|
while (true) {
|
|
// Do cheap if applicable
|
|
if (result.bitLength() > 6) {
|
|
long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
|
|
if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
|
|
(r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
|
|
(r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
|
|
result = result.add(TWO);
|
|
continue; // Candidate is composite; try another
|
|
}
|
|
}
|
|
|
|
// All candidates of bitLength 2 and 3 are prime by this point
|
|
if (result.bitLength() < 4)
|
|
return result;
|
|
|
|
// The expensive test
|
|
if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
|
|
return result;
|
|
|
|
result = result.add(TWO);
|
|
}
|
|
}
|
|
|
|
// Start at previous even number
|
|
if (result.testBit(0))
|
|
result = result.subtract(ONE);
|
|
|
|
// Looking for the next large prime
|
|
int searchLen = getPrimeSearchLen(result.bitLength());
|
|
|
|
while (true) {
|
|
BitSieve searchSieve = new BitSieve(result, searchLen);
|
|
BigInteger candidate = searchSieve.retrieve(result,
|
|
DEFAULT_PRIME_CERTAINTY, null);
|
|
if (candidate != null)
|
|
return candidate;
|
|
result = result.add(BigInteger.valueOf(2 * searchLen));
|
|
}
|
|
}
|
|
|
|
private static int getPrimeSearchLen(int bitLength) {
|
|
if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
|
|
throw new ArithmeticException();
|
|
}
|
|
return bitLength / 20 * 64;
|
|
}
|
|
|
|
/**
|
|
* Returns {@code true} if this BigInteger is probably prime,
|
|
* {@code false} if it's definitely composite.
|
|
*
|
|
* This method assumes bitLength > 2.
|
|
*
|
|
* @param certainty a measure of the uncertainty that the caller is
|
|
* willing to tolerate: if the call returns {@code true}
|
|
* the probability that this BigInteger is prime exceeds
|
|
* <code>(1 - 1/2<sup>certainty</sup>)</code>. The execution time of
|
|
* this method is proportional to the value of this parameter.
|
|
* @return {@code true} if this BigInteger is probably prime,
|
|
* {@code false} if it's definitely composite.
|
|
*/
|
|
boolean primeToCertainty(int certainty, Random random) {
|
|
int rounds = 0;
|
|
int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
|
|
|
|
// The relationship between the certainty and the number of rounds
|
|
// we perform is given in the draft standard ANSI X9.80, "PRIME
|
|
// NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
|
|
int sizeInBits = this.bitLength();
|
|
if (sizeInBits < 100) {
|
|
rounds = 50;
|
|
rounds = n < rounds ? n : rounds;
|
|
return passesMillerRabin(rounds, random);
|
|
}
|
|
|
|
if (sizeInBits < 256) {
|
|
rounds = 27;
|
|
} else if (sizeInBits < 512) {
|
|
rounds = 15;
|
|
} else if (sizeInBits < 768) {
|
|
rounds = 8;
|
|
} else if (sizeInBits < 1024) {
|
|
rounds = 4;
|
|
} else {
|
|
rounds = 2;
|
|
}
|
|
rounds = n < rounds ? n : rounds;
|
|
|
|
return passesMillerRabin(rounds, random) && passesLucasLehmer();
|
|
}
|
|
|
|
/**
|
|
* Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
|
|
*
|
|
* The following assumptions are made:
|
|
* This BigInteger is a positive, odd number.
|
|
*/
|
|
private boolean passesLucasLehmer() {
|
|
BigInteger thisPlusOne = this.add(ONE);
|
|
|
|
// Step 1
|
|
int d = 5;
|
|
while (jacobiSymbol(d, this) != -1) {
|
|
// 5, -7, 9, -11, ...
|
|
d = (d < 0) ? Math.abs(d)+2 : -(d+2);
|
|
}
|
|
|
|
// Step 2
|
|
BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
|
|
|
|
// Step 3
|
|
return u.mod(this).equals(ZERO);
|
|
}
|
|
|
|
/**
|
|
* Computes Jacobi(p,n).
|
|
* Assumes n positive, odd, n>=3.
|
|
*/
|
|
private static int jacobiSymbol(int p, BigInteger n) {
|
|
if (p == 0)
|
|
return 0;
|
|
|
|
// Algorithm and comments adapted from Colin Plumb's C library.
|
|
int j = 1;
|
|
int u = n.mag[n.mag.length-1];
|
|
|
|
// Make p positive
|
|
if (p < 0) {
|
|
p = -p;
|
|
int n8 = u & 7;
|
|
if ((n8 == 3) || (n8 == 7))
|
|
j = -j; // 3 (011) or 7 (111) mod 8
|
|
}
|
|
|
|
// Get rid of factors of 2 in p
|
|
while ((p & 3) == 0)
|
|
p >>= 2;
|
|
if ((p & 1) == 0) {
|
|
p >>= 1;
|
|
if (((u ^ (u>>1)) & 2) != 0)
|
|
j = -j; // 3 (011) or 5 (101) mod 8
|
|
}
|
|
if (p == 1)
|
|
return j;
|
|
// Then, apply quadratic reciprocity
|
|
if ((p & u & 2) != 0) // p = u = 3 (mod 4)?
|
|
j = -j;
|
|
// And reduce u mod p
|
|
u = n.mod(BigInteger.valueOf(p)).intValue();
|
|
|
|
// Now compute Jacobi(u,p), u < p
|
|
while (u != 0) {
|
|
while ((u & 3) == 0)
|
|
u >>= 2;
|
|
if ((u & 1) == 0) {
|
|
u >>= 1;
|
|
if (((p ^ (p>>1)) & 2) != 0)
|
|
j = -j; // 3 (011) or 5 (101) mod 8
|
|
}
|
|
if (u == 1)
|
|
return j;
|
|
// Now both u and p are odd, so use quadratic reciprocity
|
|
assert (u < p);
|
|
int t = u; u = p; p = t;
|
|
if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
|
|
j = -j;
|
|
// Now u >= p, so it can be reduced
|
|
u %= p;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
|
|
BigInteger d = BigInteger.valueOf(z);
|
|
BigInteger u = ONE; BigInteger u2;
|
|
BigInteger v = ONE; BigInteger v2;
|
|
|
|
for (int i=k.bitLength()-2; i >= 0; i--) {
|
|
u2 = u.multiply(v).mod(n);
|
|
|
|
v2 = v.square().add(d.multiply(u.square())).mod(n);
|
|
if (v2.testBit(0))
|
|
v2 = v2.subtract(n);
|
|
|
|
v2 = v2.shiftRight(1);
|
|
|
|
u = u2; v = v2;
|
|
if (k.testBit(i)) {
|
|
u2 = u.add(v).mod(n);
|
|
if (u2.testBit(0))
|
|
u2 = u2.subtract(n);
|
|
|
|
u2 = u2.shiftRight(1);
|
|
v2 = v.add(d.multiply(u)).mod(n);
|
|
if (v2.testBit(0))
|
|
v2 = v2.subtract(n);
|
|
v2 = v2.shiftRight(1);
|
|
|
|
u = u2; v = v2;
|
|
}
|
|
}
|
|
return u;
|
|
}
|
|
|
|
/**
|
|
* Returns true iff this BigInteger passes the specified number of
|
|
* Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
|
|
* 186-2).
|
|
*
|
|
* The following assumptions are made:
|
|
* This BigInteger is a positive, odd number greater than 2.
|
|
* iterations<=50.
|
|
*/
|
|
private boolean passesMillerRabin(int iterations, Random rnd) {
|
|
// Find a and m such that m is odd and this == 1 + 2**a * m
|
|
BigInteger thisMinusOne = this.subtract(ONE);
|
|
BigInteger m = thisMinusOne;
|
|
int a = m.getLowestSetBit();
|
|
m = m.shiftRight(a);
|
|
|
|
// Do the tests
|
|
if (rnd == null) {
|
|
rnd = ThreadLocalRandom.current();
|
|
}
|
|
for (int i=0; i < iterations; i++) {
|
|
// Generate a uniform random on (1, this)
|
|
BigInteger b;
|
|
do {
|
|
b = new BigInteger(this.bitLength(), rnd);
|
|
} while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
|
|
|
|
int j = 0;
|
|
BigInteger z = b.modPow(m, this);
|
|
while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
|
|
if (j > 0 && z.equals(ONE) || ++j == a)
|
|
return false;
|
|
z = z.modPow(TWO, this);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* This internal constructor differs from its public cousin
|
|
* with the arguments reversed in two ways: it assumes that its
|
|
* arguments are correct, and it doesn't copy the magnitude array.
|
|
*/
|
|
BigInteger(int[] magnitude, int signum) {
|
|
this.signum = (magnitude.length == 0 ? 0 : signum);
|
|
this.mag = magnitude;
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This private constructor is for internal use and assumes that its
|
|
* arguments are correct. The {@code magnitude} array is assumed to be
|
|
* unchanged for the duration of the constructor call.
|
|
*/
|
|
private BigInteger(byte[] magnitude, int signum) {
|
|
this.signum = (magnitude.length == 0 ? 0 : signum);
|
|
this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
|
|
if (mag.length >= MAX_MAG_LENGTH) {
|
|
checkRange();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Throws an {@code ArithmeticException} if the {@code BigInteger} would be
|
|
* out of the supported range.
|
|
*
|
|
* @throws ArithmeticException if {@code this} exceeds the supported range.
|
|
*/
|
|
private void checkRange() {
|
|
if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
|
|
reportOverflow();
|
|
}
|
|
}
|
|
|
|
private static void reportOverflow() {
|
|
throw new ArithmeticException();
|
|
}
|
|
|
|
//Static Factory Methods
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is equal to that of the
|
|
* specified {@code long}.
|
|
*
|
|
* @apiNote This static factory method is provided in preference
|
|
* to a ({@code long}) constructor because it allows for reuse of
|
|
* frequently used BigIntegers.
|
|
*
|
|
* @param val value of the BigInteger to return.
|
|
* @return a BigInteger with the specified value.
|
|
*/
|
|
public static BigInteger valueOf(long val) {
|
|
// If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
|
|
if (val == 0)
|
|
return ZERO;
|
|
if (val > 0 && val <= MAX_CONSTANT)
|
|
return posConst[(int) val];
|
|
else if (val < 0 && val >= -MAX_CONSTANT)
|
|
return negConst[(int) -val];
|
|
|
|
return new BigInteger(val);
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigInteger with the specified value, which may not be zero.
|
|
*/
|
|
private BigInteger(long val) {
|
|
if (val < 0) {
|
|
val = -val;
|
|
signum = -1;
|
|
} else {
|
|
signum = 1;
|
|
}
|
|
|
|
int highWord = (int)(val >>> 32);
|
|
if (highWord == 0) {
|
|
mag = new int[1];
|
|
mag[0] = (int)val;
|
|
} else {
|
|
mag = new int[2];
|
|
mag[0] = highWord;
|
|
mag[1] = (int)val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger with the given two's complement representation.
|
|
* Assumes that the input array will not be modified (the returned
|
|
* BigInteger will reference the input array if feasible).
|
|
*/
|
|
private static BigInteger valueOf(int[] val) {
|
|
return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
|
|
}
|
|
|
|
// Constants
|
|
|
|
/**
|
|
* Initialize static constant array when class is loaded.
|
|
*/
|
|
private static final int MAX_CONSTANT = 16;
|
|
@Stable
|
|
private static final BigInteger[] posConst = new BigInteger[MAX_CONSTANT+1];
|
|
@Stable
|
|
private static final BigInteger[] negConst = new BigInteger[MAX_CONSTANT+1];
|
|
|
|
/**
|
|
* The cache of powers of each radix. This allows us to not have to
|
|
* recalculate powers of radix^(2^n) more than once. This speeds
|
|
* Schoenhage recursive base conversion significantly.
|
|
*/
|
|
private static volatile BigInteger[][] powerCache;
|
|
|
|
/** The cache of logarithms of radices for base conversion. */
|
|
private static final double[] logCache;
|
|
|
|
/** The natural log of 2. This is used in computing cache indices. */
|
|
private static final double LOG_TWO = Math.log(2.0);
|
|
|
|
static {
|
|
assert 0 < KARATSUBA_THRESHOLD
|
|
&& KARATSUBA_THRESHOLD < TOOM_COOK_THRESHOLD
|
|
&& TOOM_COOK_THRESHOLD < Integer.MAX_VALUE
|
|
&& 0 < KARATSUBA_SQUARE_THRESHOLD
|
|
&& KARATSUBA_SQUARE_THRESHOLD < TOOM_COOK_SQUARE_THRESHOLD
|
|
&& TOOM_COOK_SQUARE_THRESHOLD < Integer.MAX_VALUE :
|
|
;
|
|
|
|
for (int i = 1; i <= MAX_CONSTANT; i++) {
|
|
int[] magnitude = new int[1];
|
|
magnitude[0] = i;
|
|
posConst[i] = new BigInteger(magnitude, 1);
|
|
negConst[i] = new BigInteger(magnitude, -1);
|
|
}
|
|
|
|
/*
|
|
* Initialize the cache of radix^(2^x) values used for base conversion
|
|
* with just the very first value. Additional values will be created
|
|
* on demand.
|
|
*/
|
|
BigInteger[][] cache = new BigInteger[Character.MAX_RADIX+1][];
|
|
logCache = new double[Character.MAX_RADIX+1];
|
|
|
|
for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
|
|
cache[i] = new BigInteger[] { BigInteger.valueOf(i) };
|
|
logCache[i] = Math.log(i);
|
|
}
|
|
BigInteger.powerCache = cache;
|
|
}
|
|
|
|
/**
|
|
* The BigInteger constant zero.
|
|
*
|
|
* @since 1.2
|
|
*/
|
|
public static final BigInteger ZERO = new BigInteger(new int[0], 0);
|
|
|
|
/**
|
|
* The BigInteger constant one.
|
|
*
|
|
* @since 1.2
|
|
*/
|
|
public static final BigInteger ONE = valueOf(1);
|
|
|
|
/**
|
|
* The BigInteger constant two.
|
|
*
|
|
* @since 9
|
|
*/
|
|
public static final BigInteger TWO = valueOf(2);
|
|
|
|
/**
|
|
* The BigInteger constant -1. (Not exported.)
|
|
*/
|
|
private static final BigInteger NEGATIVE_ONE = valueOf(-1);
|
|
|
|
/**
|
|
* The BigInteger constant ten.
|
|
*
|
|
* @since 1.5
|
|
*/
|
|
public static final BigInteger TEN = valueOf(10);
|
|
|
|
// Arithmetic Operations
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this + val)}.
|
|
*
|
|
* @param val value to be added to this BigInteger.
|
|
* @return {@code this + val}
|
|
*/
|
|
public BigInteger add(BigInteger val) {
|
|
if (val.signum == 0)
|
|
return this;
|
|
if (signum == 0)
|
|
return val;
|
|
if (val.signum == signum)
|
|
return new BigInteger(add(mag, val.mag), signum);
|
|
|
|
int cmp = compareMagnitude(val);
|
|
if (cmp == 0)
|
|
return ZERO;
|
|
int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
|
|
: subtract(val.mag, mag));
|
|
resultMag = trustedStripLeadingZeroInts(resultMag);
|
|
|
|
return new BigInteger(resultMag, cmp == signum ? 1 : -1);
|
|
}
|
|
|
|
/**
|
|
* Package private methods used by BigDecimal code to add a BigInteger
|
|
* with a long. Assumes val is not equal to INFLATED.
|
|
*/
|
|
BigInteger add(long val) {
|
|
if (val == 0)
|
|
return this;
|
|
if (signum == 0)
|
|
return valueOf(val);
|
|
if (Long.signum(val) == signum)
|
|
return new BigInteger(add(mag, Math.abs(val)), signum);
|
|
int cmp = compareMagnitude(val);
|
|
if (cmp == 0)
|
|
return ZERO;
|
|
int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
|
|
resultMag = trustedStripLeadingZeroInts(resultMag);
|
|
return new BigInteger(resultMag, cmp == signum ? 1 : -1);
|
|
}
|
|
|
|
/**
|
|
* Adds the contents of the int array x and long value val. This
|
|
* method allocates a new int array to hold the answer and returns
|
|
* a reference to that array. Assumes x.length > 0 and val is
|
|
* non-negative
|
|
*/
|
|
private static int[] add(int[] x, long val) {
|
|
int[] y;
|
|
long sum = 0;
|
|
int xIndex = x.length;
|
|
int[] result;
|
|
int highWord = (int)(val >>> 32);
|
|
if (highWord == 0) {
|
|
result = new int[xIndex];
|
|
sum = (x[--xIndex] & LONG_MASK) + val;
|
|
result[xIndex] = (int)sum;
|
|
} else {
|
|
if (xIndex == 1) {
|
|
result = new int[2];
|
|
sum = val + (x[0] & LONG_MASK);
|
|
result[1] = (int)sum;
|
|
result[0] = (int)(sum >>> 32);
|
|
return result;
|
|
} else {
|
|
result = new int[xIndex];
|
|
sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
|
|
result[xIndex] = (int)sum;
|
|
sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
|
|
result[xIndex] = (int)sum;
|
|
}
|
|
}
|
|
// Copy remainder of longer number while carry propagation is required
|
|
boolean carry = (sum >>> 32 != 0);
|
|
while (xIndex > 0 && carry)
|
|
carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
|
|
// Copy remainder of longer number
|
|
while (xIndex > 0)
|
|
result[--xIndex] = x[xIndex];
|
|
// Grow result if necessary
|
|
if (carry) {
|
|
int bigger[] = new int[result.length + 1];
|
|
System.arraycopy(result, 0, bigger, 1, result.length);
|
|
bigger[0] = 0x01;
|
|
return bigger;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Adds the contents of the int arrays x and y. This method allocates
|
|
* a new int array to hold the answer and returns a reference to that
|
|
* array.
|
|
*/
|
|
private static int[] add(int[] x, int[] y) {
|
|
// If x is shorter, swap the two arrays
|
|
if (x.length < y.length) {
|
|
int[] tmp = x;
|
|
x = y;
|
|
y = tmp;
|
|
}
|
|
|
|
int xIndex = x.length;
|
|
int yIndex = y.length;
|
|
int result[] = new int[xIndex];
|
|
long sum = 0;
|
|
if (yIndex == 1) {
|
|
sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
|
|
result[xIndex] = (int)sum;
|
|
} else {
|
|
// Add common parts of both numbers
|
|
while (yIndex > 0) {
|
|
sum = (x[--xIndex] & LONG_MASK) +
|
|
(y[--yIndex] & LONG_MASK) + (sum >>> 32);
|
|
result[xIndex] = (int)sum;
|
|
}
|
|
}
|
|
// Copy remainder of longer number while carry propagation is required
|
|
boolean carry = (sum >>> 32 != 0);
|
|
while (xIndex > 0 && carry)
|
|
carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
|
|
|
|
// Copy remainder of longer number
|
|
while (xIndex > 0)
|
|
result[--xIndex] = x[xIndex];
|
|
|
|
// Grow result if necessary
|
|
if (carry) {
|
|
int bigger[] = new int[result.length + 1];
|
|
System.arraycopy(result, 0, bigger, 1, result.length);
|
|
bigger[0] = 0x01;
|
|
return bigger;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private static int[] subtract(long val, int[] little) {
|
|
int highWord = (int)(val >>> 32);
|
|
if (highWord == 0) {
|
|
int result[] = new int[1];
|
|
result[0] = (int)(val - (little[0] & LONG_MASK));
|
|
return result;
|
|
} else {
|
|
int result[] = new int[2];
|
|
if (little.length == 1) {
|
|
long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
|
|
result[1] = (int)difference;
|
|
// Subtract remainder of longer number while borrow propagates
|
|
boolean borrow = (difference >> 32 != 0);
|
|
if (borrow) {
|
|
result[0] = highWord - 1;
|
|
} else { // Copy remainder of longer number
|
|
result[0] = highWord;
|
|
}
|
|
return result;
|
|
} else { // little.length == 2
|
|
long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
|
|
result[1] = (int)difference;
|
|
difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
|
|
result[0] = (int)difference;
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Subtracts the contents of the second argument (val) from the
|
|
* first (big). The first int array (big) must represent a larger number
|
|
* than the second. This method allocates the space necessary to hold the
|
|
* answer.
|
|
* assumes val >= 0
|
|
*/
|
|
private static int[] subtract(int[] big, long val) {
|
|
int highWord = (int)(val >>> 32);
|
|
int bigIndex = big.length;
|
|
int result[] = new int[bigIndex];
|
|
long difference = 0;
|
|
|
|
if (highWord == 0) {
|
|
difference = (big[--bigIndex] & LONG_MASK) - val;
|
|
result[bigIndex] = (int)difference;
|
|
} else {
|
|
difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
|
|
result[bigIndex] = (int)difference;
|
|
difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
|
|
result[bigIndex] = (int)difference;
|
|
}
|
|
|
|
// Subtract remainder of longer number while borrow propagates
|
|
boolean borrow = (difference >> 32 != 0);
|
|
while (bigIndex > 0 && borrow)
|
|
borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
|
|
|
|
// Copy remainder of longer number
|
|
while (bigIndex > 0)
|
|
result[--bigIndex] = big[bigIndex];
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this - val)}.
|
|
*
|
|
* @param val value to be subtracted from this BigInteger.
|
|
* @return {@code this - val}
|
|
*/
|
|
public BigInteger subtract(BigInteger val) {
|
|
if (val.signum == 0)
|
|
return this;
|
|
if (signum == 0)
|
|
return val.negate();
|
|
if (val.signum != signum)
|
|
return new BigInteger(add(mag, val.mag), signum);
|
|
|
|
int cmp = compareMagnitude(val);
|
|
if (cmp == 0)
|
|
return ZERO;
|
|
int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
|
|
: subtract(val.mag, mag));
|
|
resultMag = trustedStripLeadingZeroInts(resultMag);
|
|
return new BigInteger(resultMag, cmp == signum ? 1 : -1);
|
|
}
|
|
|
|
/**
|
|
* Subtracts the contents of the second int arrays (little) from the
|
|
* first (big). The first int array (big) must represent a larger number
|
|
* than the second. This method allocates the space necessary to hold the
|
|
* answer.
|
|
*/
|
|
private static int[] subtract(int[] big, int[] little) {
|
|
int bigIndex = big.length;
|
|
int result[] = new int[bigIndex];
|
|
int littleIndex = little.length;
|
|
long difference = 0;
|
|
|
|
// Subtract common parts of both numbers
|
|
while (littleIndex > 0) {
|
|
difference = (big[--bigIndex] & LONG_MASK) -
|
|
(little[--littleIndex] & LONG_MASK) +
|
|
(difference >> 32);
|
|
result[bigIndex] = (int)difference;
|
|
}
|
|
|
|
// Subtract remainder of longer number while borrow propagates
|
|
boolean borrow = (difference >> 32 != 0);
|
|
while (bigIndex > 0 && borrow)
|
|
borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
|
|
|
|
// Copy remainder of longer number
|
|
while (bigIndex > 0)
|
|
result[--bigIndex] = big[bigIndex];
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this * val)}.
|
|
*
|
|
* @implNote An implementation may offer better algorithmic
|
|
* performance when {@code val == this}.
|
|
*
|
|
* @param val value to be multiplied by this BigInteger.
|
|
* @return {@code this * val}
|
|
*/
|
|
public BigInteger multiply(BigInteger val) {
|
|
return multiply(val, false, false, 0);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this * val)}.
|
|
* When both {@code this} and {@code val} are large, typically
|
|
* in the thousands of bits, parallel multiply might be used.
|
|
* This method returns the exact same mathematical result as
|
|
* {@link #multiply}.
|
|
*
|
|
* @implNote This implementation may offer better algorithmic
|
|
* performance when {@code val == this}.
|
|
*
|
|
* @implNote Compared to {@link #multiply}, an implementation's
|
|
* parallel multiplication algorithm would typically use more
|
|
* CPU resources to compute the result faster, and may do so
|
|
* with a slight increase in memory consumption.
|
|
*
|
|
* @param val value to be multiplied by this BigInteger.
|
|
* @return {@code this * val}
|
|
* @see #multiply
|
|
* @since 19
|
|
*/
|
|
public BigInteger parallelMultiply(BigInteger val) {
|
|
return multiply(val, false, true, 0);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this * val)}. If
|
|
* the invocation is recursive certain overflow checks are skipped.
|
|
*
|
|
* @param val value to be multiplied by this BigInteger.
|
|
* @param isRecursion whether this is a recursive invocation
|
|
* @param parallel whether the multiply should be done in parallel
|
|
* @return {@code this * val}
|
|
*/
|
|
private BigInteger multiply(BigInteger val, boolean isRecursion, boolean parallel, int depth) {
|
|
if (val.signum == 0 || signum == 0)
|
|
return ZERO;
|
|
|
|
int xlen = mag.length;
|
|
|
|
if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) {
|
|
return square(true, parallel, depth);
|
|
}
|
|
|
|
int ylen = val.mag.length;
|
|
|
|
if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) {
|
|
int resultSign = signum == val.signum ? 1 : -1;
|
|
if (val.mag.length == 1) {
|
|
return multiplyByInt(mag,val.mag[0], resultSign);
|
|
}
|
|
if (mag.length == 1) {
|
|
return multiplyByInt(val.mag,mag[0], resultSign);
|
|
}
|
|
int[] result = multiplyToLen(mag, xlen,
|
|
val.mag, ylen, null);
|
|
result = trustedStripLeadingZeroInts(result);
|
|
return new BigInteger(result, resultSign);
|
|
} else {
|
|
if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
|
|
return multiplyKaratsuba(this, val);
|
|
} else {
|
|
//
|
|
// In section 2-13, p.33, it is explained
|
|
// that if x and y are unsigned 32-bit quantities and m and n
|
|
// are their respective numbers of leading zeros within 32 bits,
|
|
// then the number of leading zeros within their product as a
|
|
// 64-bit unsigned quantity is either m + n or m + n + 1. If
|
|
// their product is not to overflow, it cannot exceed 32 bits,
|
|
// and so the number of leading zeros of the product within 64
|
|
// bits must be at least 32, i.e., the leftmost set bit is at
|
|
// zero-relative position 31 or less.
|
|
//
|
|
// From the above there are three cases:
|
|
//
|
|
// m + n leftmost set bit condition
|
|
// ----- ---------------- ---------
|
|
// >= 32 x <= 64 - 32 = 32 no overflow
|
|
// == 31 x >= 64 - 32 = 32 possible overflow
|
|
// <= 30 x >= 64 - 31 = 33 definite overflow
|
|
//
|
|
// The condition cannot be detected by
|
|
// examning data lengths alone and requires further calculation.
|
|
//
|
|
// By analogy, if 'this' and 'val' have m and n as their
|
|
// respective numbers of leading zeros within 32*MAX_MAG_LENGTH
|
|
// bits, then:
|
|
//
|
|
// m + n >= 32*MAX_MAG_LENGTH no overflow
|
|
// m + n == 32*MAX_MAG_LENGTH - 1 possible overflow
|
|
// m + n <= 32*MAX_MAG_LENGTH - 2 definite overflow
|
|
//
|
|
// Note however that if the number of ints in the result
|
|
// were to be MAX_MAG_LENGTH and mag[0] < 0, then there would
|
|
// be overflow. As a result the leftmost bit (of mag[0]) cannot
|
|
// be used and the constraints must be adjusted by one bit to:
|
|
//
|
|
// m + n > 32*MAX_MAG_LENGTH no overflow
|
|
// m + n == 32*MAX_MAG_LENGTH possible overflow
|
|
// m + n < 32*MAX_MAG_LENGTH definite overflow
|
|
//
|
|
// The foregoing leading zero-based discussion is for clarity
|
|
// only. The actual calculations use the estimated bit length
|
|
// of the product as this is more natural to the internal
|
|
// array representation of the magnitude which has no leading
|
|
// zero elements.
|
|
//
|
|
if (!isRecursion) {
|
|
// The bitLength() instance method is not used here as we
|
|
// are only considering the magnitudes as non-negative. The
|
|
// Toom-Cook multiplication algorithm determines the sign
|
|
// at its end from the two signum values.
|
|
if ((long)bitLength(mag, mag.length) +
|
|
(long)bitLength(val.mag, val.mag.length) >
|
|
32L*MAX_MAG_LENGTH) {
|
|
reportOverflow();
|
|
}
|
|
}
|
|
|
|
return multiplyToomCook3(this, val, parallel, depth);
|
|
}
|
|
}
|
|
}
|
|
|
|
private static BigInteger multiplyByInt(int[] x, int y, int sign) {
|
|
if (Integer.bitCount(y) == 1) {
|
|
return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
|
|
}
|
|
int xlen = x.length;
|
|
int[] rmag = new int[xlen + 1];
|
|
long carry = 0;
|
|
long yl = y & LONG_MASK;
|
|
int rstart = rmag.length - 1;
|
|
for (int i = xlen - 1; i >= 0; i--) {
|
|
long product = (x[i] & LONG_MASK) * yl + carry;
|
|
rmag[rstart--] = (int)product;
|
|
carry = product >>> 32;
|
|
}
|
|
if (carry == 0L) {
|
|
rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
|
|
} else {
|
|
rmag[rstart] = (int)carry;
|
|
}
|
|
return new BigInteger(rmag, sign);
|
|
}
|
|
|
|
/**
|
|
* Package private methods used by BigDecimal code to multiply a BigInteger
|
|
* with a long. Assumes v is not equal to INFLATED.
|
|
*/
|
|
BigInteger multiply(long v) {
|
|
if (v == 0 || signum == 0)
|
|
return ZERO;
|
|
if (v == BigDecimal.INFLATED)
|
|
return multiply(BigInteger.valueOf(v));
|
|
int rsign = (v > 0 ? signum : -signum);
|
|
if (v < 0)
|
|
v = -v;
|
|
long dh = v >>> 32; // higher order bits
|
|
long dl = v & LONG_MASK; // lower order bits
|
|
|
|
int xlen = mag.length;
|
|
int[] value = mag;
|
|
int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
|
|
long carry = 0;
|
|
int rstart = rmag.length - 1;
|
|
for (int i = xlen - 1; i >= 0; i--) {
|
|
long product = (value[i] & LONG_MASK) * dl + carry;
|
|
rmag[rstart--] = (int)product;
|
|
carry = product >>> 32;
|
|
}
|
|
rmag[rstart] = (int)carry;
|
|
if (dh != 0L) {
|
|
carry = 0;
|
|
rstart = rmag.length - 2;
|
|
for (int i = xlen - 1; i >= 0; i--) {
|
|
long product = (value[i] & LONG_MASK) * dh +
|
|
(rmag[rstart] & LONG_MASK) + carry;
|
|
rmag[rstart--] = (int)product;
|
|
carry = product >>> 32;
|
|
}
|
|
rmag[0] = (int)carry;
|
|
}
|
|
if (carry == 0L)
|
|
rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
|
|
return new BigInteger(rmag, rsign);
|
|
}
|
|
|
|
/**
|
|
* Multiplies int arrays x and y to the specified lengths and places
|
|
* the result into z. There will be no leading zeros in the resultant array.
|
|
*/
|
|
private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
|
|
multiplyToLenCheck(x, xlen);
|
|
multiplyToLenCheck(y, ylen);
|
|
return implMultiplyToLen(x, xlen, y, ylen, z);
|
|
}
|
|
|
|
@IntrinsicCandidate
|
|
private static int[] implMultiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
|
|
int xstart = xlen - 1;
|
|
int ystart = ylen - 1;
|
|
|
|
if (z == null || z.length < (xlen+ ylen))
|
|
z = new int[xlen+ylen];
|
|
|
|
long carry = 0;
|
|
for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
|
|
long product = (y[j] & LONG_MASK) *
|
|
(x[xstart] & LONG_MASK) + carry;
|
|
z[k] = (int)product;
|
|
carry = product >>> 32;
|
|
}
|
|
z[xstart] = (int)carry;
|
|
|
|
for (int i = xstart-1; i >= 0; i--) {
|
|
carry = 0;
|
|
for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
|
|
long product = (y[j] & LONG_MASK) *
|
|
(x[i] & LONG_MASK) +
|
|
(z[k] & LONG_MASK) + carry;
|
|
z[k] = (int)product;
|
|
carry = product >>> 32;
|
|
}
|
|
z[i] = (int)carry;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
private static void multiplyToLenCheck(int[] array, int length) {
|
|
if (length <= 0) {
|
|
return; // not an error because multiplyToLen won't execute if len <= 0
|
|
}
|
|
|
|
Objects.requireNonNull(array);
|
|
|
|
if (length > array.length) {
|
|
throw new ArrayIndexOutOfBoundsException(length - 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Multiplies two BigIntegers using the Karatsuba multiplication
|
|
* algorithm. This is a recursive divide-and-conquer algorithm which is
|
|
* more efficient for large numbers than what is commonly called the
|
|
* algorithm used in multiplyToLen. If the numbers to be
|
|
* multiplied have length n, the algorithm has an
|
|
* asymptotic complexity of O(n^2). In contrast, the Karatsuba algorithm
|
|
* has complexity of O(n^(log2(3))), or O(n^1.585). It achieves this
|
|
* increased performance by doing 3 multiplies instead of 4 when
|
|
* evaluating the product. As it has some overhead, should be used when
|
|
* both numbers are larger than a certain threshold (found
|
|
* experimentally).
|
|
*
|
|
* See: http://en.wikipedia.org/wiki/Karatsuba_algorithm
|
|
*/
|
|
private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
|
|
int xlen = x.mag.length;
|
|
int ylen = y.mag.length;
|
|
|
|
// The number of ints in each half of the number.
|
|
int half = (Math.max(xlen, ylen)+1) / 2;
|
|
|
|
// xl and yl are the lower halves of x and y respectively,
|
|
// xh and yh are the upper halves.
|
|
BigInteger xl = x.getLower(half);
|
|
BigInteger xh = x.getUpper(half);
|
|
BigInteger yl = y.getLower(half);
|
|
BigInteger yh = y.getUpper(half);
|
|
|
|
BigInteger p1 = xh.multiply(yh); // p1 = xh*yh
|
|
BigInteger p2 = xl.multiply(yl); // p2 = xl*yl
|
|
|
|
// p3=(xh+xl)*(yh+yl)
|
|
BigInteger p3 = xh.add(xl).multiply(yh.add(yl));
|
|
|
|
// result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2
|
|
BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);
|
|
|
|
if (x.signum != y.signum) {
|
|
return result.negate();
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
@SuppressWarnings()
|
|
private abstract static sealed class RecursiveOp extends RecursiveTask<BigInteger> {
|
|
/**
|
|
* The threshold until when we should continue forking recursive ops
|
|
* if parallel is true. This threshold is only relevant for Toom Cook 3
|
|
* multiply and square.
|
|
*/
|
|
private static final int PARALLEL_FORK_DEPTH_THRESHOLD =
|
|
calculateMaximumDepth(ForkJoinPool.getCommonPoolParallelism());
|
|
|
|
private static final int calculateMaximumDepth(int parallelism) {
|
|
return 32 - Integer.numberOfLeadingZeros(parallelism);
|
|
}
|
|
|
|
final boolean parallel;
|
|
/**
|
|
* The current recursing depth. Since it is a logarithmic algorithm,
|
|
* we do not need an int to hold the number.
|
|
*/
|
|
final byte depth;
|
|
|
|
private RecursiveOp(boolean parallel, int depth) {
|
|
this.parallel = parallel;
|
|
this.depth = (byte) depth;
|
|
}
|
|
|
|
private static int getParallelForkDepthThreshold() {
|
|
if (Thread.currentThread() instanceof ForkJoinWorkerThread fjwt) {
|
|
return calculateMaximumDepth(fjwt.getPool().getParallelism());
|
|
}
|
|
else {
|
|
return PARALLEL_FORK_DEPTH_THRESHOLD;
|
|
}
|
|
}
|
|
|
|
protected RecursiveTask<BigInteger> forkOrInvoke() {
|
|
if (parallel && depth <= getParallelForkDepthThreshold()) fork();
|
|
else invoke();
|
|
return this;
|
|
}
|
|
|
|
@SuppressWarnings()
|
|
private static final class RecursiveMultiply extends RecursiveOp {
|
|
private final BigInteger a;
|
|
private final BigInteger b;
|
|
|
|
public RecursiveMultiply(BigInteger a, BigInteger b, boolean parallel, int depth) {
|
|
super(parallel, depth);
|
|
this.a = a;
|
|
this.b = b;
|
|
}
|
|
|
|
@Override
|
|
public BigInteger compute() {
|
|
return a.multiply(b, true, parallel, depth);
|
|
}
|
|
}
|
|
|
|
@SuppressWarnings()
|
|
private static final class RecursiveSquare extends RecursiveOp {
|
|
private final BigInteger a;
|
|
|
|
public RecursiveSquare(BigInteger a, boolean parallel, int depth) {
|
|
super(parallel, depth);
|
|
this.a = a;
|
|
}
|
|
|
|
@Override
|
|
public BigInteger compute() {
|
|
return a.square(true, parallel, depth);
|
|
}
|
|
}
|
|
|
|
private static RecursiveTask<BigInteger> multiply(BigInteger a, BigInteger b, boolean parallel, int depth) {
|
|
return new RecursiveMultiply(a, b, parallel, depth).forkOrInvoke();
|
|
}
|
|
|
|
private static RecursiveTask<BigInteger> square(BigInteger a, boolean parallel, int depth) {
|
|
return new RecursiveSquare(a, parallel, depth).forkOrInvoke();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Multiplies two BigIntegers using a 3-way Toom-Cook multiplication
|
|
* algorithm. This is a recursive divide-and-conquer algorithm which is
|
|
* more efficient for large numbers than what is commonly called the
|
|
* algorithm used in multiplyToLen. If the numbers to be
|
|
* multiplied have length n, the algorithm has an
|
|
* asymptotic complexity of O(n^2). In contrast, 3-way Toom-Cook has a
|
|
* complexity of about O(n^1.465). It achieves this increased asymptotic
|
|
* performance by breaking each number into three parts and by doing 5
|
|
* multiplies instead of 9 when evaluating the product. Due to overhead
|
|
* (additions, shifts, and one division) in the Toom-Cook algorithm, it
|
|
* should only be used when both numbers are larger than a certain
|
|
* threshold (found experimentally). This threshold is generally larger
|
|
* than that for Karatsuba multiplication, so this algorithm is generally
|
|
* only used when numbers become significantly larger.
|
|
*
|
|
* The algorithm used is the 3-way Toom-Cook algorithm outlined
|
|
* by Marco Bodrato.
|
|
*
|
|
* See: http://bodrato.it/toom-cook/
|
|
* http://bodrato.it/papers/#WAIFI2007
|
|
*
|
|
* "Towards Optimal Toom-Cook Multiplication for Univariate and
|
|
* Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO;
|
|
* In C.Carlet and B.Sunar, Eds., , p. 116-133,
|
|
* LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
|
|
*
|
|
*/
|
|
private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b, boolean parallel, int depth) {
|
|
int alen = a.mag.length;
|
|
int blen = b.mag.length;
|
|
|
|
int largest = Math.max(alen, blen);
|
|
|
|
// k is the size (in ints) of the lower-order slices.
|
|
int k = (largest+2)/3; // Equal to ceil(largest/3)
|
|
|
|
// r is the size (in ints) of the highest-order slice.
|
|
int r = largest - 2*k;
|
|
|
|
// Obtain slices of the numbers. a2 and b2 are the most significant
|
|
// bits of the numbers a and b, and a0 and b0 the least significant.
|
|
BigInteger a0, a1, a2, b0, b1, b2;
|
|
a2 = a.getToomSlice(k, r, 0, largest);
|
|
a1 = a.getToomSlice(k, r, 1, largest);
|
|
a0 = a.getToomSlice(k, r, 2, largest);
|
|
b2 = b.getToomSlice(k, r, 0, largest);
|
|
b1 = b.getToomSlice(k, r, 1, largest);
|
|
b0 = b.getToomSlice(k, r, 2, largest);
|
|
|
|
BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;
|
|
|
|
depth++;
|
|
var v0_task = RecursiveOp.multiply(a0, b0, parallel, depth);
|
|
da1 = a2.add(a0);
|
|
db1 = b2.add(b0);
|
|
var vm1_task = RecursiveOp.multiply(da1.subtract(a1), db1.subtract(b1), parallel, depth);
|
|
da1 = da1.add(a1);
|
|
db1 = db1.add(b1);
|
|
var v1_task = RecursiveOp.multiply(da1, db1, parallel, depth);
|
|
v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
|
|
db1.add(b2).shiftLeft(1).subtract(b0), true, parallel, depth);
|
|
vinf = a2.multiply(b2, true, parallel, depth);
|
|
v0 = v0_task.join();
|
|
vm1 = vm1_task.join();
|
|
v1 = v1_task.join();
|
|
|
|
// The algorithm requires two divisions by 2 and one by 3.
|
|
// All divisions are known to be exact, that is, they do not produce
|
|
// remainders, and all results are positive. The divisions by 2 are
|
|
// implemented as right shifts which are relatively efficient, leaving
|
|
// only an exact division by 3, which is done by a specialized
|
|
// linear-time algorithm.
|
|
t2 = v2.subtract(vm1).exactDivideBy3();
|
|
tm1 = v1.subtract(vm1).shiftRight(1);
|
|
t1 = v1.subtract(v0);
|
|
t2 = t2.subtract(t1).shiftRight(1);
|
|
t1 = t1.subtract(tm1).subtract(vinf);
|
|
t2 = t2.subtract(vinf.shiftLeft(1));
|
|
tm1 = tm1.subtract(t2);
|
|
|
|
// Number of bits to shift left.
|
|
int ss = k*32;
|
|
|
|
BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
|
|
|
|
if (a.signum != b.signum) {
|
|
return result.negate();
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns a slice of a BigInteger for use in Toom-Cook multiplication.
|
|
*
|
|
* @param lowerSize The size of the lower-order bit slices.
|
|
* @param upperSize The size of the higher-order bit slices.
|
|
* @param slice The index of which slice is requested, which must be a
|
|
* number from 0 to size-1. Slice 0 is the highest-order bits, and slice
|
|
* size-1 are the lowest-order bits. Slice 0 may be of different size than
|
|
* the other slices.
|
|
* @param fullsize The size of the larger integer array, used to align
|
|
* slices to the appropriate position when multiplying different-sized
|
|
* numbers.
|
|
*/
|
|
private BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
|
|
int fullsize) {
|
|
int start, end, sliceSize, len, offset;
|
|
|
|
len = mag.length;
|
|
offset = fullsize - len;
|
|
|
|
if (slice == 0) {
|
|
start = 0 - offset;
|
|
end = upperSize - 1 - offset;
|
|
} else {
|
|
start = upperSize + (slice-1)*lowerSize - offset;
|
|
end = start + lowerSize - 1;
|
|
}
|
|
|
|
if (start < 0) {
|
|
start = 0;
|
|
}
|
|
if (end < 0) {
|
|
return ZERO;
|
|
}
|
|
|
|
sliceSize = (end-start) + 1;
|
|
|
|
if (sliceSize <= 0) {
|
|
return ZERO;
|
|
}
|
|
|
|
// While performing Toom-Cook, all slices are positive and
|
|
// the sign is adjusted when the final number is composed.
|
|
if (start == 0 && sliceSize >= len) {
|
|
return this.abs();
|
|
}
|
|
|
|
int intSlice[] = new int[sliceSize];
|
|
System.arraycopy(mag, start, intSlice, 0, sliceSize);
|
|
|
|
return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
|
|
}
|
|
|
|
/**
|
|
* Does an exact division (that is, the remainder is known to be zero)
|
|
* of the specified number by 3. This is used in Toom-Cook
|
|
* multiplication. This is an efficient algorithm that runs in linear
|
|
* time. If the argument is not exactly divisible by 3, results are
|
|
* undefined. Note that this is expected to be called with positive
|
|
* arguments only.
|
|
*/
|
|
private BigInteger exactDivideBy3() {
|
|
int len = mag.length;
|
|
int[] result = new int[len];
|
|
long x, w, q, borrow;
|
|
borrow = 0L;
|
|
for (int i=len-1; i >= 0; i--) {
|
|
x = (mag[i] & LONG_MASK);
|
|
w = x - borrow;
|
|
if (borrow > x) { // Did we make the number go negative?
|
|
borrow = 1L;
|
|
} else {
|
|
borrow = 0L;
|
|
}
|
|
|
|
// 0xAAAAAAAB is the modular inverse of 3 (mod 2^32). Thus,
|
|
// the effect of this is to divide by 3 (mod 2^32).
|
|
// This is much faster than division on most architectures.
|
|
q = (w * 0xAAAAAAABL) & LONG_MASK;
|
|
result[i] = (int) q;
|
|
|
|
// Now check the borrow. The second check can of course be
|
|
// eliminated if the first fails.
|
|
if (q >= 0x55555556L) {
|
|
borrow++;
|
|
if (q >= 0xAAAAAAABL)
|
|
borrow++;
|
|
}
|
|
}
|
|
result = trustedStripLeadingZeroInts(result);
|
|
return new BigInteger(result, signum);
|
|
}
|
|
|
|
/**
|
|
* Returns a new BigInteger representing n lower ints of the number.
|
|
* This is used by Karatsuba multiplication and Karatsuba squaring.
|
|
*/
|
|
private BigInteger getLower(int n) {
|
|
int len = mag.length;
|
|
|
|
if (len <= n) {
|
|
return abs();
|
|
}
|
|
|
|
int lowerInts[] = new int[n];
|
|
System.arraycopy(mag, len-n, lowerInts, 0, n);
|
|
|
|
return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
|
|
}
|
|
|
|
/**
|
|
* Returns a new BigInteger representing mag.length-n upper
|
|
* ints of the number. This is used by Karatsuba multiplication and
|
|
* Karatsuba squaring.
|
|
*/
|
|
private BigInteger getUpper(int n) {
|
|
int len = mag.length;
|
|
|
|
if (len <= n) {
|
|
return ZERO;
|
|
}
|
|
|
|
int upperLen = len - n;
|
|
int upperInts[] = new int[upperLen];
|
|
System.arraycopy(mag, 0, upperInts, 0, upperLen);
|
|
|
|
return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
|
|
}
|
|
|
|
// Squaring
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is <code>(this<sup>2</sup>)</code>.
|
|
*
|
|
* @return <code>this<sup>2</sup></code>
|
|
*/
|
|
private BigInteger square() {
|
|
return square(false, false, 0);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is <code>(this<sup>2</sup>)</code>. If
|
|
* the invocation is recursive certain overflow checks are skipped.
|
|
*
|
|
* @param isRecursion whether this is a recursive invocation
|
|
* @return <code>this<sup>2</sup></code>
|
|
*/
|
|
private BigInteger square(boolean isRecursion, boolean parallel, int depth) {
|
|
if (signum == 0) {
|
|
return ZERO;
|
|
}
|
|
int len = mag.length;
|
|
|
|
if (len < KARATSUBA_SQUARE_THRESHOLD) {
|
|
int[] z = squareToLen(mag, len, null);
|
|
return new BigInteger(trustedStripLeadingZeroInts(z), 1);
|
|
} else {
|
|
if (len < TOOM_COOK_SQUARE_THRESHOLD) {
|
|
return squareKaratsuba();
|
|
} else {
|
|
//
|
|
// For a discussion of overflow detection see multiply()
|
|
//
|
|
if (!isRecursion) {
|
|
if (bitLength(mag, mag.length) > 16L*MAX_MAG_LENGTH) {
|
|
reportOverflow();
|
|
}
|
|
}
|
|
|
|
return squareToomCook3(parallel, depth);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Squares the contents of the int array x. The result is placed into the
|
|
* int array z. The contents of x are not changed.
|
|
*/
|
|
private static final int[] squareToLen(int[] x, int len, int[] z) {
|
|
int zlen = len << 1;
|
|
if (z == null || z.length < zlen)
|
|
z = new int[zlen];
|
|
|
|
// Execute checks before calling intrinsified method.
|
|
implSquareToLenChecks(x, len, z, zlen);
|
|
return implSquareToLen(x, len, z, zlen);
|
|
}
|
|
|
|
/**
|
|
* Parameters validation.
|
|
*/
|
|
private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException {
|
|
if (len < 1) {
|
|
throw new IllegalArgumentException( + len);
|
|
}
|
|
if (len > x.length) {
|
|
throw new IllegalArgumentException( +
|
|
len + + x.length);
|
|
}
|
|
if (len * 2 > z.length) {
|
|
throw new IllegalArgumentException( +
|
|
(len * 2) + + z.length);
|
|
}
|
|
if (zlen < 1) {
|
|
throw new IllegalArgumentException( + zlen);
|
|
}
|
|
if (zlen > z.length) {
|
|
throw new IllegalArgumentException( +
|
|
len + + z.length);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Java Runtime may use intrinsic for this method.
|
|
*/
|
|
@IntrinsicCandidate
|
|
private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) {
|
|
/*
|
|
* The algorithm used here is adapted from Colin Plumb's C library.
|
|
* Technique: Consider the partial products in the multiplication
|
|
* of by itself:
|
|
*
|
|
* a b c d e
|
|
* * a b c d e
|
|
* ==================
|
|
* ae be ce de ee
|
|
* ad bd cd dd de
|
|
* ac bc cc cd ce
|
|
* ab bb bc bd be
|
|
* aa ab ac ad ae
|
|
*
|
|
* Note that everything above the main diagonal:
|
|
* ae be ce de = (abcd) * e
|
|
* ad bd cd = (abc) * d
|
|
* ac bc = (ab) * c
|
|
* ab = (a) * b
|
|
*
|
|
* is a copy of everything below the main diagonal:
|
|
* de
|
|
* cd ce
|
|
* bc bd be
|
|
* ab ac ad ae
|
|
*
|
|
* Thus, the sum is 2 * (off the diagonal) + diagonal.
|
|
*
|
|
* This is accumulated beginning with the diagonal (which
|
|
* consist of the squares of the digits of the input), which is then
|
|
* divided by two, the off-diagonal added, and multiplied by two
|
|
* again. The low bit is simply a copy of the low bit of the
|
|
* input, so it doesn't need special care.
|
|
*/
|
|
|
|
// Store the squares, right shifted one bit (i.e., divided by 2)
|
|
int lastProductLowWord = 0;
|
|
for (int j=0, i=0; j < len; j++) {
|
|
long piece = (x[j] & LONG_MASK);
|
|
long product = piece * piece;
|
|
z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
|
|
z[i++] = (int)(product >>> 1);
|
|
lastProductLowWord = (int)product;
|
|
}
|
|
|
|
// Add in off-diagonal sums
|
|
for (int i=len, offset=1; i > 0; i--, offset+=2) {
|
|
int t = x[i-1];
|
|
t = mulAdd(z, x, offset, i-1, t);
|
|
addOne(z, offset-1, i, t);
|
|
}
|
|
|
|
// Shift back up and set low bit
|
|
primitiveLeftShift(z, zlen, 1);
|
|
z[zlen-1] |= x[len-1] & 1;
|
|
|
|
return z;
|
|
}
|
|
|
|
/**
|
|
* Squares a BigInteger using the Karatsuba squaring algorithm. It should
|
|
* be used when both numbers are larger than a certain threshold (found
|
|
* experimentally). It is a recursive divide-and-conquer algorithm that
|
|
* has better asymptotic performance than the algorithm used in
|
|
* squareToLen.
|
|
*/
|
|
private BigInteger squareKaratsuba() {
|
|
int half = (mag.length+1) / 2;
|
|
|
|
BigInteger xl = getLower(half);
|
|
BigInteger xh = getUpper(half);
|
|
|
|
BigInteger xhs = xh.square(); // xhs = xh^2
|
|
BigInteger xls = xl.square(); // xls = xl^2
|
|
|
|
// xh^2 << 64 + (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2
|
|
return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls);
|
|
}
|
|
|
|
/**
|
|
* Squares a BigInteger using the 3-way Toom-Cook squaring algorithm. It
|
|
* should be used when both numbers are larger than a certain threshold
|
|
* (found experimentally). It is a recursive divide-and-conquer algorithm
|
|
* that has better asymptotic performance than the algorithm used in
|
|
* squareToLen or squareKaratsuba.
|
|
*/
|
|
private BigInteger squareToomCook3(boolean parallel, int depth) {
|
|
int len = mag.length;
|
|
|
|
// k is the size (in ints) of the lower-order slices.
|
|
int k = (len+2)/3; // Equal to ceil(largest/3)
|
|
|
|
// r is the size (in ints) of the highest-order slice.
|
|
int r = len - 2*k;
|
|
|
|
// Obtain slices of the numbers. a2 is the most significant
|
|
// bits of the number, and a0 the least significant.
|
|
BigInteger a0, a1, a2;
|
|
a2 = getToomSlice(k, r, 0, len);
|
|
a1 = getToomSlice(k, r, 1, len);
|
|
a0 = getToomSlice(k, r, 2, len);
|
|
BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;
|
|
|
|
depth++;
|
|
var v0_fork = RecursiveOp.square(a0, parallel, depth);
|
|
da1 = a2.add(a0);
|
|
var vm1_fork = RecursiveOp.square(da1.subtract(a1), parallel, depth);
|
|
da1 = da1.add(a1);
|
|
var v1_fork = RecursiveOp.square(da1, parallel, depth);
|
|
vinf = a2.square(true, parallel, depth);
|
|
v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(true, parallel, depth);
|
|
v0 = v0_fork.join();
|
|
vm1 = vm1_fork.join();
|
|
v1 = v1_fork.join();
|
|
|
|
// The algorithm requires two divisions by 2 and one by 3.
|
|
// All divisions are known to be exact, that is, they do not produce
|
|
// remainders, and all results are positive. The divisions by 2 are
|
|
// implemented as right shifts which are relatively efficient, leaving
|
|
// only a division by 3.
|
|
// The division by 3 is done by an optimized algorithm for this case.
|
|
t2 = v2.subtract(vm1).exactDivideBy3();
|
|
tm1 = v1.subtract(vm1).shiftRight(1);
|
|
t1 = v1.subtract(v0);
|
|
t2 = t2.subtract(t1).shiftRight(1);
|
|
t1 = t1.subtract(tm1).subtract(vinf);
|
|
t2 = t2.subtract(vinf.shiftLeft(1));
|
|
tm1 = tm1.subtract(t2);
|
|
|
|
// Number of bits to shift left.
|
|
int ss = k*32;
|
|
|
|
return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
|
|
}
|
|
|
|
// Division
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this / val)}.
|
|
*
|
|
* @param val value by which this BigInteger is to be divided.
|
|
* @return {@code this / val}
|
|
* @throws ArithmeticException if {@code val} is zero.
|
|
*/
|
|
public BigInteger divide(BigInteger val) {
|
|
if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
|
|
mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
|
|
return divideKnuth(val);
|
|
} else {
|
|
return divideBurnikelZiegler(val);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth.
|
|
*
|
|
* @param val value by which this BigInteger is to be divided.
|
|
* @return {@code this / val}
|
|
* @throws ArithmeticException if {@code val} is zero.
|
|
* @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
|
|
*/
|
|
private BigInteger divideKnuth(BigInteger val) {
|
|
MutableBigInteger q = new MutableBigInteger(),
|
|
a = new MutableBigInteger(this.mag),
|
|
b = new MutableBigInteger(val.mag);
|
|
|
|
a.divideKnuth(b, q, false);
|
|
return q.toBigInteger(this.signum * val.signum);
|
|
}
|
|
|
|
/**
|
|
* Returns an array of two BigIntegers containing {@code (this / val)}
|
|
* followed by {@code (this % val)}.
|
|
*
|
|
* @param val value by which this BigInteger is to be divided, and the
|
|
* remainder computed.
|
|
* @return an array of two BigIntegers: the quotient {@code (this / val)}
|
|
* is the initial element, and the remainder {@code (this % val)}
|
|
* is the final element.
|
|
* @throws ArithmeticException if {@code val} is zero.
|
|
*/
|
|
public BigInteger[] divideAndRemainder(BigInteger val) {
|
|
if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
|
|
mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
|
|
return divideAndRemainderKnuth(val);
|
|
} else {
|
|
return divideAndRemainderBurnikelZiegler(val);
|
|
}
|
|
}
|
|
|
|
/** Long division */
|
|
private BigInteger[] divideAndRemainderKnuth(BigInteger val) {
|
|
BigInteger[] result = new BigInteger[2];
|
|
MutableBigInteger q = new MutableBigInteger(),
|
|
a = new MutableBigInteger(this.mag),
|
|
b = new MutableBigInteger(val.mag);
|
|
MutableBigInteger r = a.divideKnuth(b, q);
|
|
result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
|
|
result[1] = r.toBigInteger(this.signum);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this % val)}.
|
|
*
|
|
* @param val value by which this BigInteger is to be divided, and the
|
|
* remainder computed.
|
|
* @return {@code this % val}
|
|
* @throws ArithmeticException if {@code val} is zero.
|
|
*/
|
|
public BigInteger remainder(BigInteger val) {
|
|
if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
|
|
mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
|
|
return remainderKnuth(val);
|
|
} else {
|
|
return remainderBurnikelZiegler(val);
|
|
}
|
|
}
|
|
|
|
/** Long division */
|
|
private BigInteger remainderKnuth(BigInteger val) {
|
|
MutableBigInteger q = new MutableBigInteger(),
|
|
a = new MutableBigInteger(this.mag),
|
|
b = new MutableBigInteger(val.mag);
|
|
|
|
return a.divideKnuth(b, q).toBigInteger(this.signum);
|
|
}
|
|
|
|
/**
|
|
* Calculates {@code this / val} using the Burnikel-Ziegler algorithm.
|
|
* @param val the divisor
|
|
* @return {@code this / val}
|
|
*/
|
|
private BigInteger divideBurnikelZiegler(BigInteger val) {
|
|
return divideAndRemainderBurnikelZiegler(val)[0];
|
|
}
|
|
|
|
/**
|
|
* Calculates {@code this % val} using the Burnikel-Ziegler algorithm.
|
|
* @param val the divisor
|
|
* @return {@code this % val}
|
|
*/
|
|
private BigInteger remainderBurnikelZiegler(BigInteger val) {
|
|
return divideAndRemainderBurnikelZiegler(val)[1];
|
|
}
|
|
|
|
/**
|
|
* Computes {@code this / val} and {@code this % val} using the
|
|
* Burnikel-Ziegler algorithm.
|
|
* @param val the divisor
|
|
* @return an array containing the quotient and remainder
|
|
*/
|
|
private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) {
|
|
MutableBigInteger q = new MutableBigInteger();
|
|
MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
|
|
BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum);
|
|
BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum);
|
|
return new BigInteger[] {qBigInt, rBigInt};
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is <code>(this<sup>exponent</sup>)</code>.
|
|
* Note that {@code exponent} is an integer rather than a BigInteger.
|
|
*
|
|
* @param exponent exponent to which this BigInteger is to be raised.
|
|
* @return <code>this<sup>exponent</sup></code>
|
|
* @throws ArithmeticException {@code exponent} is negative. (This would
|
|
* cause the operation to yield a non-integer value.)
|
|
*/
|
|
public BigInteger pow(int exponent) {
|
|
if (exponent < 0) {
|
|
throw new ArithmeticException();
|
|
}
|
|
if (signum == 0) {
|
|
return (exponent == 0 ? ONE : this);
|
|
}
|
|
|
|
BigInteger partToSquare = this.abs();
|
|
|
|
// Factor out powers of two from the base, as the exponentiation of
|
|
// these can be done by left shifts only.
|
|
// The remaining part can then be exponentiated faster. The
|
|
// powers of two will be multiplied back at the end.
|
|
int powersOfTwo = partToSquare.getLowestSetBit();
|
|
long bitsToShiftLong = (long)powersOfTwo * exponent;
|
|
if (bitsToShiftLong > Integer.MAX_VALUE) {
|
|
reportOverflow();
|
|
}
|
|
int bitsToShift = (int)bitsToShiftLong;
|
|
|
|
int remainingBits;
|
|
|
|
// Factor the powers of two out quickly by shifting right, if needed.
|
|
if (powersOfTwo > 0) {
|
|
partToSquare = partToSquare.shiftRight(powersOfTwo);
|
|
remainingBits = partToSquare.bitLength();
|
|
if (remainingBits == 1) { // Nothing left but +/- 1?
|
|
if (signum < 0 && (exponent&1) == 1) {
|
|
return NEGATIVE_ONE.shiftLeft(bitsToShift);
|
|
} else {
|
|
return ONE.shiftLeft(bitsToShift);
|
|
}
|
|
}
|
|
} else {
|
|
remainingBits = partToSquare.bitLength();
|
|
if (remainingBits == 1) { // Nothing left but +/- 1?
|
|
if (signum < 0 && (exponent&1) == 1) {
|
|
return NEGATIVE_ONE;
|
|
} else {
|
|
return ONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is a quick way to approximate the size of the result,
|
|
// similar to doing log2[n] * exponent. This will give an upper bound
|
|
// of how big the result can be, and which algorithm to use.
|
|
long scaleFactor = (long)remainingBits * exponent;
|
|
|
|
// Use slightly different algorithms for small and large operands.
|
|
// See if the result will safely fit into a long. (Largest 2^63-1)
|
|
if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
|
|
// Small number algorithm. Everything fits into a long.
|
|
int newSign = (signum <0 && (exponent&1) == 1 ? -1 : 1);
|
|
long result = 1;
|
|
long baseToPow2 = partToSquare.mag[0] & LONG_MASK;
|
|
|
|
int workingExponent = exponent;
|
|
|
|
// Perform exponentiation using repeated squaring trick
|
|
while (workingExponent != 0) {
|
|
if ((workingExponent & 1) == 1) {
|
|
result = result * baseToPow2;
|
|
}
|
|
|
|
if ((workingExponent >>>= 1) != 0) {
|
|
baseToPow2 = baseToPow2 * baseToPow2;
|
|
}
|
|
}
|
|
|
|
// Multiply back the powers of two (quickly, by shifting left)
|
|
if (powersOfTwo > 0) {
|
|
if (bitsToShift + scaleFactor <= 62) { // Fits in long?
|
|
return valueOf((result << bitsToShift) * newSign);
|
|
} else {
|
|
return valueOf(result*newSign).shiftLeft(bitsToShift);
|
|
}
|
|
} else {
|
|
return valueOf(result*newSign);
|
|
}
|
|
} else {
|
|
if ((long)bitLength() * exponent / Integer.SIZE > MAX_MAG_LENGTH) {
|
|
reportOverflow();
|
|
}
|
|
|
|
// Large number algorithm. This is basically identical to
|
|
// the algorithm above, but calls multiply() and square()
|
|
// which may use more efficient algorithms for large numbers.
|
|
BigInteger answer = ONE;
|
|
|
|
int workingExponent = exponent;
|
|
// Perform exponentiation using repeated squaring trick
|
|
while (workingExponent != 0) {
|
|
if ((workingExponent & 1) == 1) {
|
|
answer = answer.multiply(partToSquare);
|
|
}
|
|
|
|
if ((workingExponent >>>= 1) != 0) {
|
|
partToSquare = partToSquare.square();
|
|
}
|
|
}
|
|
// Multiply back the (exponentiated) powers of two (quickly,
|
|
// by shifting left)
|
|
if (powersOfTwo > 0) {
|
|
answer = answer.shiftLeft(bitsToShift);
|
|
}
|
|
|
|
if (signum < 0 && (exponent&1) == 1) {
|
|
return answer.negate();
|
|
} else {
|
|
return answer;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the integer square root of this BigInteger. The integer square
|
|
* root of the corresponding mathematical integer {@code n} is the largest
|
|
* mathematical integer {@code s} such that {@code s*s <= n}. It is equal
|
|
* to the value of {@code floor(sqrt(n))}, where {@code sqrt(n)} denotes the
|
|
* real square root of {@code n} treated as a real. Note that the integer
|
|
* square root will be less than the real square root if the latter is not
|
|
* representable as an integral value.
|
|
*
|
|
* @return the integer square root of {@code this}
|
|
* @throws ArithmeticException if {@code this} is negative. (The square
|
|
* root of a negative integer {@code val} is
|
|
* {@code (i * sqrt(-val))} where <i>i</i> is the
|
|
* <i>imaginary unit</i> and is equal to
|
|
* {@code sqrt(-1)}.)
|
|
* @since 9
|
|
*/
|
|
public BigInteger sqrt() {
|
|
if (this.signum < 0) {
|
|
throw new ArithmeticException();
|
|
}
|
|
|
|
return new MutableBigInteger(this.mag).sqrt().toBigInteger();
|
|
}
|
|
|
|
/**
|
|
* Returns an array of two BigIntegers containing the integer square root
|
|
* {@code s} of {@code this} and its remainder {@code this - s*s},
|
|
* respectively.
|
|
*
|
|
* @return an array of two BigIntegers with the integer square root at
|
|
* offset 0 and the remainder at offset 1
|
|
* @throws ArithmeticException if {@code this} is negative. (The square
|
|
* root of a negative integer {@code val} is
|
|
* {@code (i * sqrt(-val))} where <i>i</i> is the
|
|
* <i>imaginary unit</i> and is equal to
|
|
* {@code sqrt(-1)}.)
|
|
* @see #sqrt()
|
|
* @since 9
|
|
*/
|
|
public BigInteger[] sqrtAndRemainder() {
|
|
BigInteger s = sqrt();
|
|
BigInteger r = this.subtract(s.square());
|
|
assert r.compareTo(BigInteger.ZERO) >= 0;
|
|
return new BigInteger[] {s, r};
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is the greatest common divisor of
|
|
* {@code abs(this)} and {@code abs(val)}. Returns 0 if
|
|
* {@code this == 0 && val == 0}.
|
|
*
|
|
* @param val value with which the GCD is to be computed.
|
|
* @return {@code GCD(abs(this), abs(val))}
|
|
*/
|
|
public BigInteger gcd(BigInteger val) {
|
|
if (val.signum == 0)
|
|
return this.abs();
|
|
else if (this.signum == 0)
|
|
return val.abs();
|
|
|
|
MutableBigInteger a = new MutableBigInteger(this);
|
|
MutableBigInteger b = new MutableBigInteger(val);
|
|
|
|
MutableBigInteger result = a.hybridGCD(b);
|
|
|
|
return result.toBigInteger(1);
|
|
}
|
|
|
|
/**
|
|
* Package private method to return bit length for an integer.
|
|
*/
|
|
static int bitLengthForInt(int n) {
|
|
return 32 - Integer.numberOfLeadingZeros(n);
|
|
}
|
|
|
|
/**
|
|
* Left shift int array a up to len by n bits. Returns the array that
|
|
* results from the shift since space may have to be reallocated.
|
|
*/
|
|
private static int[] leftShift(int[] a, int len, int n) {
|
|
int nInts = n >>> 5;
|
|
int nBits = n&0x1F;
|
|
int bitsInHighWord = bitLengthForInt(a[0]);
|
|
|
|
// If shift can be done without recopy, do so
|
|
if (n <= (32-bitsInHighWord)) {
|
|
primitiveLeftShift(a, len, nBits);
|
|
return a;
|
|
} else { // Array must be resized
|
|
if (nBits <= (32-bitsInHighWord)) {
|
|
int result[] = new int[nInts+len];
|
|
System.arraycopy(a, 0, result, 0, len);
|
|
primitiveLeftShift(result, result.length, nBits);
|
|
return result;
|
|
} else {
|
|
int result[] = new int[nInts+len+1];
|
|
System.arraycopy(a, 0, result, 0, len);
|
|
primitiveRightShift(result, result.length, 32 - nBits);
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
// shifts a up to len right n bits assumes no leading zeros, 0<n<32
|
|
static void primitiveRightShift(int[] a, int len, int n) {
|
|
Objects.checkFromToIndex(0, len, a.length);
|
|
shiftRightImplWorker(a, a, 1, n, len-1);
|
|
a[0] >>>= n;
|
|
}
|
|
|
|
// shifts a up to len left n bits assumes no leading zeros, 0<=n<32
|
|
static void primitiveLeftShift(int[] a, int len, int n) {
|
|
if (len == 0 || n == 0)
|
|
return;
|
|
Objects.checkFromToIndex(0, len, a.length);
|
|
shiftLeftImplWorker(a, a, 0, n, len-1);
|
|
a[len-1] <<= n;
|
|
}
|
|
|
|
/**
|
|
* Calculate bitlength of contents of the first len elements an int array,
|
|
* assuming there are no leading zero ints.
|
|
*/
|
|
private static int bitLength(int[] val, int len) {
|
|
if (len == 0)
|
|
return 0;
|
|
return ((len - 1) << 5) + bitLengthForInt(val[0]);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is the absolute value of this
|
|
* BigInteger.
|
|
*
|
|
* @return {@code abs(this)}
|
|
*/
|
|
public BigInteger abs() {
|
|
return (signum >= 0 ? this : this.negate());
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (-this)}.
|
|
*
|
|
* @return {@code -this}
|
|
*/
|
|
public BigInteger negate() {
|
|
return new BigInteger(this.mag, -this.signum);
|
|
}
|
|
|
|
/**
|
|
* Returns the signum function of this BigInteger.
|
|
*
|
|
* @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
|
|
* positive.
|
|
*/
|
|
public int signum() {
|
|
return this.signum;
|
|
}
|
|
|
|
// Modular Arithmetic Operations
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is {@code (this mod m}). This method
|
|
* differs from {@code remainder} in that it always returns a
|
|
* <i>non-negative</i> BigInteger.
|
|
*
|
|
* @param m the modulus.
|
|
* @return {@code this mod m}
|
|
* @throws ArithmeticException {@code m} ≤ 0
|
|
* @see #remainder
|
|
*/
|
|
public BigInteger mod(BigInteger m) {
|
|
if (m.signum <= 0)
|
|
throw new ArithmeticException();
|
|
|
|
BigInteger result = this.remainder(m);
|
|
return (result.signum >= 0 ? result : result.add(m));
|
|
}
|
|
|
|
/**
|
|
* Returns a BigInteger whose value is
|
|
* <code>(this<sup>exponent</sup> mod m)</code>. (Unlike {@code pow}, this
|
|
* method permits negative exponents.)
|
|
*
|
|
* @param exponent the exponent.
|
|
* @param m the modulus.
|
|
* @return <code>this<sup>exponent</sup> mod m</code>
|
|
* @throws ArithmeticException {@code m} ≤ 0 or the exponent is
|
|
* negative and this BigInteger is not <i>relatively
|
|
* prime</i> to {@code m}.
|
|
* @see #modInverse
|
|
*/
|
|
public BigInteger modPow(BigInteger exponent, BigInteger m) {
|
|
if (m.signum <= 0)
|
|
throw new ArithmeticException();
|
|
|
|
// Trivial cases
|
|
if (exponent.signum == 0)
|
|
return (m.equals(ONE) ? ZERO : ONE);
|
|
|
|
if (this.equals(ONE))
|
|
return (m.equals(ONE) ? ZERO : ONE);
|
|
|
|
if (this.equals(ZERO) && exponent.signum >= 0)
|
|
return ZERO;
|
|
|
|
if (this.equals(negConst[1]) && (!exponent.testBit(0)))
|
|
return (m.equals(ONE) ? ZERO : ONE);
|
|
|
|
boolean invertResult;
|
|
if ((invertResult = (exponent.signum < 0)))
|
|
exponent = exponent.negate();
|
|
|
|
BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
|
|
? this.mod(m) : this);
|
|
BigInteger result;
|
|
if (m.testBit(0)) { // odd modulus
|
|
result = base.oddModPow(exponent, m);
|
|
} else {
|
|
/*
|
|
* Even modulus. Tear it into an (m1) and power of two
|
|
* (m2), exponentiate mod m1, manually exponentiate mod m2, and
|
|
* use Chinese Remainder Theorem to combine results.
|
|
*/
|
|
|
|
// Tear m apart into odd part (m1) and power of 2 (m2)
|
|
int p = m.getLowestSetBit(); // Max pow of 2 that divides m
|
|
|
|
BigInteger m1 = m.shiftRight(p); // m/2**p
|
|
BigInteger m2 = ONE.shiftLeft(p); // 2**p
|
|
|
|
// Calculate new base from m1
|
|
BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
|
|
? this.mod(m1) : this);
|
|
|
|
// Calculate (base ** exponent) mod m1.
|
|
BigInteger a1 = (m1.equals(ONE) ? ZERO :
|
|
base2.oddModPow(exponent, m1));
|
|
|
|
// Calculate (this ** exponent) mod m2
|
|
BigInteger a2 = base.modPow2(exponent, p);
|
|
|
|
// Combine results using Chinese Remainder Theorem
|
|
BigInteger y1 = m2.modInverse(m1);
|
|
BigInteger y2 = m1.modInverse(m2);
|
|
|
|
if (m.mag.length < MAX_MAG_LENGTH / 2) {
|
|
result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
|
|
} else {
|
|
MutableBigInteger t1 = new MutableBigInteger();
|
|
new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
|
|
MutableBigInteger t2 = new MutableBigInteger();
|
|
new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
|
|
t1.add(t2);
|
|
MutableBigInteger q = new MutableBigInteger();
|
|
result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
|
|
}
|
|
}
|
|
|
|
return (invertResult ? result.modInverse(m) : result);
|
|
}
|
|
|
|
// Montgomery multiplication. These are wrappers for
|
|
// implMontgomeryXX routines which are expected to be replaced by
|
|
// virtual machine intrinsics. We don't use the intrinsics for
|
|
// very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should be
|
|
// larger than any reasonable crypto key.
|
|
private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv,
|
|
int[] product) {
|
|
implMontgomeryMultiplyChecks(a, b, n, len, product);
|
|
if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
|
|
// Very long argument: do not use an intrinsic
|
|
product = multiplyToLen(a, len, b, len, product);
|
|
return montReduce(product, n, len, (int)inv);
|
|
} else {
|
|
return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len));
|
|
}
|
|
}
|
|
private static int[] montgomerySquare(int[] a, int[] n, int len, long inv,
|
|
int[] product) {
|
|
implMontgomeryMultiplyChecks(a, a, n, len, product);
|
|
if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
|
|
// Very long argument: do not use an intrinsic
|
|
product = squareToLen(a, len, product);
|
|
return montReduce(product, n, len, (int)inv);
|
|
} else {
|
|
return implMontgomerySquare(a, n, len, inv, materialize(product, len));
|
|
}
|
|
}
|
|
|
|
// Range-check everything.
|
|
private static void implMontgomeryMultiplyChecks
|
|
(int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException {
|
|
if (len % 2 != 0) {
|
|
throw new IllegalArgumentException( + len);
|
|
}
|
|
|
|
if (len < 1) {
|
|
throw new IllegalArgumentException( + len);
|
|
}
|
|
|
|
if (len > a.length ||
|
|
len > b.length ||
|
|
len > n.length ||
|
|
(product != null && len > product.length)) {
|
|
throw new IllegalArgumentException( + len);
|
|
}
|
|
}
|
|
|
|
// Make sure that the int array z (which is expected to contain
|
|
// the result of a Montgomery multiplication) is present and
|
|
// sufficiently large.
|
|
private static int[] materialize(int[] z, int len) {
|
|
if (z == null || z.length < len)
|
|
z = new int[len];
|
|
return z;
|
|
}
|
|
|
|
// These methods are intended to be replaced by virtual machine
|
|
// intrinsics.
|
|
@IntrinsicCandidate
|
|
private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len,
|
|
long inv, int[] product) {
|
|
product = multiplyToLen(a, len, b, len, product);
|
|
return montReduce(product, n, len, (int)inv);
|
|
}
|
|
@IntrinsicCandidate
|
|
private static int[] implMontgomerySquare(int[] a, int[] n, int len,
|
|
long inv, int[] product) {
|
|
product = squareToLen(a, len, product);
|
|
return montReduce(product, n, len, (int)inv);
|
|
}
|
|
|
|
static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
|
|
Integer.MAX_VALUE}; // Sentinel
|
|
|
|
public int getLowestSetBit() {
|
|
int lsb = lowestSetBitPlusTwo - 2;
|
|
if (lsb == -2) { // lowestSetBit not initialized yet
|
|
lsb = 0;
|
|
if (signum == 0) {
|
|
lsb -= 1;
|
|
} else {
|
|
// Search for lowest order nonzero int
|
|
int i,b;
|
|
for (i=0; (b = getInt(i)) == 0; i++)
|
|
;
|
|
lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
|
|
}
|
|
lowestSetBitPlusTwo = lsb + 2;
|
|
}
|
|
return lsb;
|
|
}
|
|
|
|
|
|
// Miscellaneous Bit Operations
|
|
|
|
/**
|
|
* Returns the number of bits in the minimal two's-complement
|
|
* representation of this BigInteger, <em>excluding</em> a sign bit.
|
|
* For positive BigIntegers, this is equivalent to the number of bits in
|
|
* the ordinary binary representation. For zero this method returns
|
|
* {@code 0}. (Computes {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
|
|
*
|
|
* @return number of bits in the minimal two's-complement
|
|
* representation of this BigInteger, <em>excluding</em> a sign bit.
|
|
*/
|
|
public int bitLength() {
|
|
int n = bitLengthPlusOne - 1;
|
|
if (n == -1) { // bitLength not initialized yet
|
|
int[] m = mag;
|
|
int len = m.length;
|
|
if (len == 0) {
|
|
n = 0; // offset by one to initialize
|
|
} else {
|
|
// Calculate the bit length of the magnitude
|
|
int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
|
|
if (signum < 0) {
|
|
// Check if magnitude is a power of two
|
|
boolean pow2 = (Integer.bitCount(mag[0]) == 1);
|
|
for (int i=1; i< len && pow2; i++)
|
|
pow2 = (mag[i] == 0);
|
|
|
|
n = (pow2 ? magBitLength - 1 : magBitLength);
|
|
} else {
|
|
n = magBitLength;
|
|
}
|
|
}
|
|
bitLengthPlusOne = n + 1;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of bits in the two's complement representation
|
|
* of this BigInteger that differ from its sign bit. This method is
|
|
* useful when implementing bit-vector style sets atop BigIntegers.
|
|
*
|
|
* @return number of bits in the two's complement representation
|
|
* of this BigInteger that differ from its sign bit.
|
|
*/
|
|
public int bitCount() {
|
|
int bc = bitCountPlusOne - 1;
|
|
if (bc == -1) { // bitCount not initialized yet
|
|
bc = 0; // offset by one to initialize
|
|
// Count the bits in the magnitude
|
|
for (int i=0; i < mag.length; i++)
|
|
bc += Integer.bitCount(mag[i]);
|
|
if (signum < 0) {
|
|
// Count the trailing zeros in the magnitude
|
|
int magTrailingZeroCount = 0, j;
|
|
for (j=mag.length-1; mag[j] == 0; j--)
|
|
magTrailingZeroCount += 32;
|
|
magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
|
|
bc += magTrailingZeroCount - 1;
|
|
}
|
|
bitCountPlusOne = bc + 1;
|
|
}
|
|
return bc;
|
|
}
|
|
|
|
// Primality Testing
|
|
|
|
/**
|
|
* Returns {@code true} if this BigInteger is probably prime,
|
|
* {@code false} if it's definitely composite. If
|
|
* {@code certainty} is ≤ 0, {@code true} is
|
|
* returned.
|
|
*
|
|
* @param certainty a measure of the uncertainty that the caller is
|
|
* willing to tolerate: if the call returns {@code true}
|
|
* the probability that this BigInteger is prime exceeds
|
|
* (1 - 1/2<sup>{@code certainty}</sup>). The execution time of
|
|
* this method is proportional to the value of this parameter.
|
|
* @return {@code true} if this BigInteger is probably prime,
|
|
* {@code false} if it's definitely composite.
|
|
* @throws ArithmeticException {@code this} is too large.
|
|
* @implNote Due to the nature of the underlying primality test algorithm,
|
|
* and depending on the size of {@code this} and {@code certainty},
|
|
* this method could consume a large amount of memory, up to
|
|
* exhaustion of available heap space, or could run for a long time.
|
|
*/
|
|
public boolean isProbablePrime(int certainty) {
|
|
if (certainty <= 0)
|
|
return true;
|
|
BigInteger w = this.abs();
|
|
if (w.equals(TWO))
|
|
return true;
|
|
if (!w.testBit(0) || w.equals(ONE))
|
|
return false;
|
|
if (w.bitLength() > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
|
|
throw new ArithmeticException();
|
|
}
|
|
return w.primeToCertainty(certainty, null);
|
|
}
|
|
|
|
// Comparison Operations
|
|
|
|
/**
|
|
* Compares this BigInteger with the specified BigInteger. This
|
|
* method is provided in preference to individual methods for each
|
|
* of the six boolean comparison operators ({@literal <}, ==,
|
|
* {@literal >}, {@literal >=}, !=, {@literal <=}). The suggested
|
|
* idiom for performing these comparisons is: {@code
|
|
* (x.compareTo(y)} <<i>op</i>> {@code 0)}, where
|
|
* <<i>op</i>> is one of the six comparison operators.
|
|
*
|
|
* @param val BigInteger to which this BigInteger is to be compared.
|
|
* @return -1, 0 or 1 as this BigInteger is numerically less than, equal
|
|
* to, or greater than {@code val}.
|
|
*/
|
|
public int compareTo(BigInteger val) {
|
|
if (signum == val.signum) {
|
|
return switch (signum) {
|
|
case 1 -> compareMagnitude(val);
|
|
case -1 -> val.compareMagnitude(this);
|
|
default -> 0;
|
|
};
|
|
}
|
|
return signum > val.signum ? 1 : -1;
|
|
}
|
|
|
|
/**
|
|
* Compares the magnitude array of this BigInteger with the specified
|
|
* BigInteger's. This is the version of compareTo ignoring sign.
|
|
*
|
|
* @param val BigInteger whose magnitude array to be compared.
|
|
* @return -1, 0 or 1 as this magnitude array is less than, equal to or
|
|
* greater than the magnitude array for the specified BigInteger's.
|
|
*/
|
|
final int compareMagnitude(BigInteger val) {
|
|
int[] m1 = mag;
|
|
int len1 = m1.length;
|
|
int[] m2 = val.mag;
|
|
int len2 = m2.length;
|
|
if (len1 < len2)
|
|
return -1;
|
|
if (len1 > len2)
|
|
return 1;
|
|
for (int i = 0; i < len1; i++) {
|
|
int a = m1[i];
|
|
int b = m2[i];
|
|
if (a != b)
|
|
return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Version of compareMagnitude that compares magnitude with long value.
|
|
* val can't be Long.MIN_VALUE.
|
|
*/
|
|
final int compareMagnitude(long val) {
|
|
assert val != Long.MIN_VALUE;
|
|
int[] m1 = mag;
|
|
int len = m1.length;
|
|
if (len > 2) {
|
|
return 1;
|
|
}
|
|
if (val < 0) {
|
|
val = -val;
|
|
}
|
|
int highWord = (int)(val >>> 32);
|
|
if (highWord == 0) {
|
|
if (len < 1)
|
|
return -1;
|
|
if (len > 1)
|
|
return 1;
|
|
int a = m1[0];
|
|
int b = (int)val;
|
|
if (a != b) {
|
|
return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
|
|
}
|
|
return 0;
|
|
} else {
|
|
if (len < 2)
|
|
return -1;
|
|
int a = m1[0];
|
|
int b = highWord;
|
|
if (a != b) {
|
|
return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
|
|
}
|
|
a = m1[1];
|
|
b = (int)val;
|
|
if (a != b) {
|
|
return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compares this BigInteger with the specified Object for equality.
|
|
*
|
|
* @param x Object to which this BigInteger is to be compared.
|
|
* @return {@code true} if and only if the specified Object is a
|
|
* BigInteger whose value is numerically equal to this BigInteger.
|
|
*/
|
|
public boolean equals(Object x) {
|
|
// This test is just an optimization, which may or may not help
|
|
if (x == this)
|
|
return true;
|
|
|
|
if (!(x instanceof BigInteger xInt))
|
|
return false;
|
|
|
|
if (xInt.signum != signum)
|
|
return false;
|
|
|
|
int[] m = mag;
|
|
int len = m.length;
|
|
int[] xm = xInt.mag;
|
|
if (len != xm.length)
|
|
return false;
|
|
|
|
for (int i = 0; i < len; i++)
|
|
if (xm[i] != m[i])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Returns the minimum of this BigInteger and {@code val}.
|
|
*
|
|
* @param val value with which the minimum is to be computed.
|
|
* @return the BigInteger whose value is the lesser of this BigInteger and
|
|
* {@code val}. If they are equal, either may be returned.
|
|
*/
|
|
public BigInteger min(BigInteger val) {
|
|
return (compareTo(val) < 0 ? this : val);
|
|
}
|
|
|
|
/**
|
|
* Returns the maximum of this BigInteger and {@code val}.
|
|
*
|
|
* @param val value with which the maximum is to be computed.
|
|
* @return the BigInteger whose value is the greater of this and
|
|
* {@code val}. If they are equal, either may be returned.
|
|
*/
|
|
public BigInteger max(BigInteger val) {
|
|
return (compareTo(val) > 0 ? this : val);
|
|
}
|
|
|
|
|
|
// Hash Function
|
|
|
|
/**
|
|
* Returns the hash code for this BigInteger.
|
|
*
|
|
* @return hash code for this BigInteger.
|
|
*/
|
|
public int hashCode() {
|
|
int hashCode = 0;
|
|
|
|
for (int i=0; i < mag.length; i++)
|
|
hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
|
|
|
|
return hashCode * signum;
|
|
}
|
|
|
|
/**
|
|
* Returns the String representation of this BigInteger in the
|
|
* given radix. If the radix is outside the range from {@link
|
|
* Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
|
|
* it will default to 10 (as is the case for
|
|
* {@code Integer.toString}). The digit-to-character mapping
|
|
* provided by {@code Character.forDigit} is used, and a minus
|
|
* sign is prepended if appropriate. (This representation is
|
|
* compatible with the {@link #BigInteger(String, int) (String,
|
|
* int)} constructor.)
|
|
*
|
|
* @param radix radix of the String representation.
|
|
* @return String representation of this BigInteger in the given radix.
|
|
* @see Integer#toString
|
|
* @see Character#forDigit
|
|
* @see #BigInteger(java.lang.String, int)
|
|
*/
|
|
public String toString(int radix) {
|
|
if (signum == 0)
|
|
return ;
|
|
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
|
|
radix = 10;
|
|
|
|
BigInteger abs = this.abs();
|
|
|
|
// Ensure buffer capacity sufficient to contain string representation
|
|
// floor(bitLength*log(2)/log(radix)) + 1
|
|
// plus an additional character for the sign if negative.
|
|
int b = abs.bitLength();
|
|
int numChars = (int)(Math.floor(b*LOG_TWO/logCache[radix]) + 1) +
|
|
(signum < 0 ? 1 : 0);
|
|
StringBuilder sb = new StringBuilder(numChars);
|
|
|
|
if (signum < 0) {
|
|
sb.append('-');
|
|
}
|
|
|
|
// Use recursive toString.
|
|
toString(abs, sb, radix, 0);
|
|
|
|
return sb.toString();
|
|
}
|
|
|
|
/**
|
|
* If {@code numZeros > 0}, appends that many zeros to the
|
|
* specified StringBuilder; otherwise, does nothing.
|
|
*
|
|
* @param buf The StringBuilder that will be appended to.
|
|
* @param numZeros The number of zeros to append.
|
|
*/
|
|
private static void padWithZeros(StringBuilder buf, int numZeros) {
|
|
while (numZeros >= NUM_ZEROS) {
|
|
buf.append(ZEROS);
|
|
numZeros -= NUM_ZEROS;
|
|
}
|
|
if (numZeros > 0) {
|
|
buf.append(ZEROS, 0, numZeros);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method is used to perform toString when arguments are small.
|
|
* The value must be non-negative. If {@code digits <= 0} no padding
|
|
* (pre-pending with zeros) will be effected.
|
|
*
|
|
* @param radix The base to convert to.
|
|
* @param buf The StringBuilder that will be appended to in place.
|
|
* @param digits The minimum number of digits to pad to.
|
|
*/
|
|
private void smallToString(int radix, StringBuilder buf, int digits) {
|
|
assert signum >= 0;
|
|
|
|
if (signum == 0) {
|
|
padWithZeros(buf, digits);
|
|
return;
|
|
}
|
|
|
|
// Compute upper bound on number of digit groups and allocate space
|
|
int maxNumDigitGroups = (4*mag.length + 6)/7;
|
|
long[] digitGroups = new long[maxNumDigitGroups];
|
|
|
|
// Translate number to string, a digit group at a time
|
|
BigInteger tmp = this;
|
|
int numGroups = 0;
|
|
while (tmp.signum != 0) {
|
|
BigInteger d = longRadix[radix];
|
|
|
|
MutableBigInteger q = new MutableBigInteger(),
|
|
a = new MutableBigInteger(tmp.mag),
|
|
b = new MutableBigInteger(d.mag);
|
|
MutableBigInteger r = a.divide(b, q);
|
|
BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
|
|
BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
|
|
|
|
digitGroups[numGroups++] = r2.longValue();
|
|
tmp = q2;
|
|
}
|
|
|
|
// Get string version of first digit group
|
|
String s = Long.toString(digitGroups[numGroups-1], radix);
|
|
|
|
// Pad with internal zeros if necessary.
|
|
padWithZeros(buf, digits - (s.length() +
|
|
(numGroups - 1)*digitsPerLong[radix]));
|
|
|
|
// Put first digit group into result buffer
|
|
buf.append(s);
|
|
|
|
// Append remaining digit groups each padded with leading zeros
|
|
for (int i=numGroups-2; i >= 0; i--) {
|
|
// Prepend (any) leading zeros for this digit group
|
|
s = Long.toString(digitGroups[i], radix);
|
|
int numLeadingZeros = digitsPerLong[radix] - s.length();
|
|
if (numLeadingZeros != 0) {
|
|
buf.append(ZEROS, 0, numLeadingZeros);
|
|
}
|
|
buf.append(s);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Converts the specified BigInteger to a string and appends to
|
|
* {@code sb}. This implements the recursive Schoenhage algorithm
|
|
* for base conversions. This method can only be called for non-negative
|
|
* numbers.
|
|
* <p>
|
|
* See Knuth, Donald, _The Art of Computer Programming_, Vol. 2,
|
|
* Answers to Exercises (4.4) Question 14.
|
|
*
|
|
* @param u The number to convert to a string.
|
|
* @param sb The StringBuilder that will be appended to in place.
|
|
* @param radix The base to convert to.
|
|
* @param digits The minimum number of digits to pad to.
|
|
*/
|
|
private static void toString(BigInteger u, StringBuilder sb,
|
|
int radix, int digits) {
|
|
assert u.signum() >= 0;
|
|
|
|
// If we're smaller than a certain threshold, use the smallToString
|
|
// method, padding with leading zeroes when necessary unless we're
|
|
// at the beginning of the string or digits <= 0. As u.signum() >= 0,
|
|
// smallToString() will not prepend a negative sign.
|
|
if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
|
|
u.smallToString(radix, sb, digits);
|
|
return;
|
|
}
|
|
|
|
// Calculate a value for n in the equation radix^(2^n) = u
|
|
// and subtract 1 from that value. This is used to find the
|
|
// cache index that contains the best value to divide u.
|
|
int b = u.bitLength();
|
|
int n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) /
|
|
LOG_TWO - 1.0);
|
|
|
|
BigInteger v = getRadixConversionCache(radix, n);
|
|
BigInteger[] results;
|
|
results = u.divideAndRemainder(v);
|
|
|
|
int expectedDigits = 1 << n;
|
|
|
|
// Now recursively build the two halves of each number.
|
|
toString(results[0], sb, radix, digits - expectedDigits);
|
|
toString(results[1], sb, radix, expectedDigits);
|
|
}
|
|
|
|
/**
|
|
* Returns the value radix^(2^exponent) from the cache.
|
|
* If this value doesn't already exist in the cache, it is added.
|
|
* <p>
|
|
* This could be changed to a more complicated caching method using
|
|
* {@code Future}.
|
|
*/
|
|
private static BigInteger getRadixConversionCache(int radix, int exponent) {
|
|
BigInteger[] cacheLine = powerCache[radix]; // volatile read
|
|
if (exponent < cacheLine.length) {
|
|
return cacheLine[exponent];
|
|
}
|
|
|
|
int oldLength = cacheLine.length;
|
|
cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
|
|
for (int i = oldLength; i <= exponent; i++) {
|
|
cacheLine[i] = cacheLine[i - 1].pow(2);
|
|
}
|
|
|
|
BigInteger[][] pc = powerCache; // volatile read again
|
|
if (exponent >= pc[radix].length) {
|
|
pc = pc.clone();
|
|
pc[radix] = cacheLine;
|
|
powerCache = pc; // volatile write, publish
|
|
}
|
|
return cacheLine[exponent];
|
|
}
|
|
|
|
/* Size of ZEROS string. */
|
|
private static int NUM_ZEROS = 63;
|
|
|
|
/* ZEROS is a string of NUM_ZEROS consecutive zeros. */
|
|
private static final String ZEROS = .repeat(NUM_ZEROS);
|
|
|
|
/**
|
|
* Returns the decimal String representation of this BigInteger.
|
|
* The digit-to-character mapping provided by
|
|
* {@code Character.forDigit} is used, and a minus sign is
|
|
* prepended if appropriate. (This representation is compatible
|
|
* with the {@link #BigInteger(String) (String)} constructor, and
|
|
* allows for String concatenation with Java's + operator.)
|
|
*
|
|
* @return decimal String representation of this BigInteger.
|
|
* @see Character#forDigit
|
|
* @see #BigInteger(java.lang.String)
|
|
*/
|
|
public String toString() {
|
|
return toString(10);
|
|
}
|
|
|
|
/**
|
|
* Returns a byte array containing the two's-complement
|
|
* representation of this BigInteger. The byte array will be in
|
|
* <i>big-endian</i> byte-order: the most significant byte is in
|
|
* the zeroth element. The array will contain the minimum number
|
|
* of bytes required to represent this BigInteger, including at
|
|
* least one sign bit, which is {@code (ceil((this.bitLength() +
|
|
* 1)/8))}. (This representation is compatible with the
|
|
* {@link #BigInteger(byte[]) (byte[])} constructor.)
|
|
*
|
|
* @return a byte array containing the two's-complement representation of
|
|
* this BigInteger.
|
|
* @see #BigInteger(byte[])
|
|
*/
|
|
public byte[] toByteArray() {
|
|
int byteLen = bitLength()/8 + 1;
|
|
byte[] byteArray = new byte[byteLen];
|
|
|
|
for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
|
|
if (bytesCopied == 4) {
|
|
nextInt = getInt(intIndex++);
|
|
bytesCopied = 1;
|
|
} else {
|
|
nextInt >>>= 8;
|
|
bytesCopied++;
|
|
}
|
|
byteArray[i] = (byte)nextInt;
|
|
}
|
|
return byteArray;
|
|
}
|
|
|
|
/**
|
|
* Converts this BigInteger to an {@code int}. This
|
|
* conversion is analogous to a
|
|
* <i>narrowing primitive conversion</i> from {@code long} to
|
|
* {@code int} as defined in
|
|
* <cite>The Java Language Specification</cite>:
|
|
* if this BigInteger is too big to fit in an
|
|
* {@code int}, only the low-order 32 bits are returned.
|
|
* Note that this conversion can lose information about the
|
|
* overall magnitude of the BigInteger value as well as return a
|
|
* result with the opposite sign.
|
|
*
|
|
* @return this BigInteger converted to an {@code int}.
|
|
* @see #intValueExact()
|
|
* @jls 5.1.3 Narrowing Primitive Conversion
|
|
*/
|
|
public int intValue() {
|
|
int result = 0;
|
|
result = getInt(0);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Converts this BigInteger to a {@code long}. This
|
|
* conversion is analogous to a
|
|
* <i>narrowing primitive conversion</i> from {@code long} to
|
|
* {@code int} as defined in
|
|
* <cite>The Java Language Specification</cite>:
|
|
* if this BigInteger is too big to fit in a
|
|
* {@code long}, only the low-order 64 bits are returned.
|
|
* Note that this conversion can lose information about the
|
|
* overall magnitude of the BigInteger value as well as return a
|
|
* result with the opposite sign.
|
|
*
|
|
* @return this BigInteger converted to a {@code long}.
|
|
* @see #longValueExact()
|
|
* @jls 5.1.3 Narrowing Primitive Conversion
|
|
*/
|
|
public long longValue() {
|
|
long result = 0;
|
|
|
|
for (int i=1; i >= 0; i--)
|
|
result = (result << 32) + (getInt(i) & LONG_MASK);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Converts this BigInteger to a {@code float}. This
|
|
* conversion is similar to the
|
|
* <i>narrowing primitive conversion</i> from {@code double} to
|
|
* {@code float} as defined in
|
|
* <cite>The Java Language Specification</cite>:
|
|
* if this BigInteger has too great a magnitude
|
|
* to represent as a {@code float}, it will be converted to
|
|
* {@link Float#NEGATIVE_INFINITY} or {@link
|
|
* Float#POSITIVE_INFINITY} as appropriate. Note that even when
|
|
* the return value is finite, this conversion can lose
|
|
* information about the precision of the BigInteger value.
|
|
*
|
|
* @return this BigInteger converted to a {@code float}.
|
|
* @jls 5.1.3 Narrowing Primitive Conversion
|
|
*/
|
|
public float floatValue() {
|
|
if (signum == 0) {
|
|
return 0.0f;
|
|
}
|
|
|
|
int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
|
|
|
|
// exponent == floor(log2(abs(this)))
|
|
if (exponent < Long.SIZE - 1) {
|
|
return longValue();
|
|
} else if (exponent > Float.MAX_EXPONENT) {
|
|
return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
|
}
|
|
|
|
/*
|
|
* We need the top SIGNIFICAND_WIDTH bits, including the
|
|
* one bit. To make rounding easier, we pick out the top
|
|
* SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
|
|
* down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
|
|
* bits, and signifFloor the top SIGNIFICAND_WIDTH.
|
|
*
|
|
* It helps to consider the real number signif = abs(this) *
|
|
* 2^(SIGNIFICAND_WIDTH - 1 - exponent).
|
|
*/
|
|
int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
|
|
|
|
int twiceSignifFloor;
|
|
// twiceSignifFloor will be == abs().shiftRight(shift).intValue()
|
|
// We do the shift into an int directly to improve performance.
|
|
|
|
int nBits = shift & 0x1f;
|
|
int nBits2 = 32 - nBits;
|
|
|
|
if (nBits == 0) {
|
|
twiceSignifFloor = mag[0];
|
|
} else {
|
|
twiceSignifFloor = mag[0] >>> nBits;
|
|
if (twiceSignifFloor == 0) {
|
|
twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
|
|
}
|
|
}
|
|
|
|
int signifFloor = twiceSignifFloor >> 1;
|
|
signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
|
|
|
|
/*
|
|
* We round up if either the fractional part of signif is strictly
|
|
* greater than 0.5 (which is true if the 0.5 bit is set and any lower
|
|
* bit is set), or if the fractional part of signif is >= 0.5 and
|
|
* signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
|
|
* are set). This is equivalent to the desired HALF_EVEN rounding.
|
|
*/
|
|
boolean increment = (twiceSignifFloor & 1) != 0
|
|
&& ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
|
|
int signifRounded = increment ? signifFloor + 1 : signifFloor;
|
|
int bits = ((exponent + FloatConsts.EXP_BIAS))
|
|
<< (FloatConsts.SIGNIFICAND_WIDTH - 1);
|
|
bits += signifRounded;
|
|
/*
|
|
* If signifRounded == 2^24, we'd need to set all of the significand
|
|
* bits to zero and add 1 to the exponent. This is exactly the behavior
|
|
* we get from just adding signifRounded to bits directly. If the
|
|
* exponent is Float.MAX_EXPONENT, we round up (correctly) to
|
|
* Float.POSITIVE_INFINITY.
|
|
*/
|
|
bits |= signum & FloatConsts.SIGN_BIT_MASK;
|
|
return Float.intBitsToFloat(bits);
|
|
}
|
|
|
|
/**
|
|
* Converts this BigInteger to a {@code double}. This
|
|
* conversion is similar to the
|
|
* <i>narrowing primitive conversion</i> from {@code double} to
|
|
* {@code float} as defined in
|
|
* <cite>The Java Language Specification</cite>:
|
|
* if this BigInteger has too great a magnitude
|
|
* to represent as a {@code double}, it will be converted to
|
|
* {@link Double#NEGATIVE_INFINITY} or {@link
|
|
* Double#POSITIVE_INFINITY} as appropriate. Note that even when
|
|
* the return value is finite, this conversion can lose
|
|
* information about the precision of the BigInteger value.
|
|
*
|
|
* @return this BigInteger converted to a {@code double}.
|
|
* @jls 5.1.3 Narrowing Primitive Conversion
|
|
*/
|
|
public double doubleValue() {
|
|
if (signum == 0) {
|
|
return 0.0;
|
|
}
|
|
|
|
int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
|
|
|
|
// exponent == floor(log2(abs(this))Double)
|
|
if (exponent < Long.SIZE - 1) {
|
|
return longValue();
|
|
} else if (exponent > Double.MAX_EXPONENT) {
|
|
return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
|
}
|
|
|
|
/*
|
|
* We need the top SIGNIFICAND_WIDTH bits, including the
|
|
* one bit. To make rounding easier, we pick out the top
|
|
* SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
|
|
* down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
|
|
* bits, and signifFloor the top SIGNIFICAND_WIDTH.
|
|
*
|
|
* It helps to consider the real number signif = abs(this) *
|
|
* 2^(SIGNIFICAND_WIDTH - 1 - exponent).
|
|
*/
|
|
int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
|
|
|
|
long twiceSignifFloor;
|
|
// twiceSignifFloor will be == abs().shiftRight(shift).longValue()
|
|
// We do the shift into a long directly to improve performance.
|
|
|
|
int nBits = shift & 0x1f;
|
|
int nBits2 = 32 - nBits;
|
|
|
|
int highBits;
|
|
int lowBits;
|
|
if (nBits == 0) {
|
|
highBits = mag[0];
|
|
lowBits = mag[1];
|
|
} else {
|
|
highBits = mag[0] >>> nBits;
|
|
lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
|
|
if (highBits == 0) {
|
|
highBits = lowBits;
|
|
lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
|
|
}
|
|
}
|
|
|
|
twiceSignifFloor = ((highBits & LONG_MASK) << 32)
|
|
| (lowBits & LONG_MASK);
|
|
|
|
long signifFloor = twiceSignifFloor >> 1;
|
|
signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
|
|
|
|
/*
|
|
* We round up if either the fractional part of signif is strictly
|
|
* greater than 0.5 (which is true if the 0.5 bit is set and any lower
|
|
* bit is set), or if the fractional part of signif is >= 0.5 and
|
|
* signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
|
|
* are set). This is equivalent to the desired HALF_EVEN rounding.
|
|
*/
|
|
boolean increment = (twiceSignifFloor & 1) != 0
|
|
&& ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
|
|
long signifRounded = increment ? signifFloor + 1 : signifFloor;
|
|
long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
|
|
<< (DoubleConsts.SIGNIFICAND_WIDTH - 1);
|
|
bits += signifRounded;
|
|
/*
|
|
* If signifRounded == 2^53, we'd need to set all of the significand
|
|
* bits to zero and add 1 to the exponent. This is exactly the behavior
|
|
* we get from just adding signifRounded to bits directly. If the
|
|
* exponent is Double.MAX_EXPONENT, we round up (correctly) to
|
|
* Double.POSITIVE_INFINITY.
|
|
*/
|
|
bits |= signum & DoubleConsts.SIGN_BIT_MASK;
|
|
return Double.longBitsToDouble(bits);
|
|
}
|
|
|
|
/**
|
|
* Returns a copy of the input array stripped of any leading zero bytes.
|
|
*/
|
|
private static int[] stripLeadingZeroInts(int[] val) {
|
|
int vlen = val.length;
|
|
int keep;
|
|
|
|
// Find first nonzero byte
|
|
for (keep = 0; keep < vlen && val[keep] == 0; keep++)
|
|
;
|
|
return java.util.Arrays.copyOfRange(val, keep, vlen);
|
|
}
|
|
|
|
/**
|
|
* Returns the input array stripped of any leading zero bytes.
|
|
* Since the source is trusted the copying may be skipped.
|
|
*/
|
|
private static int[] trustedStripLeadingZeroInts(int[] val) {
|
|
int vlen = val.length;
|
|
int keep;
|
|
|
|
// Find first nonzero byte
|
|
for (keep = 0; keep < vlen && val[keep] == 0; keep++)
|
|
;
|
|
return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
|
|
}
|
|
|
|
private static int[] stripLeadingZeroBytes(byte[] a, int from, int len) {
|
|
return stripLeadingZeroBytes(Integer.MIN_VALUE, a, from, len);
|
|
}
|
|
|
|
/*
|
|
* Returns a copy of the input array stripped of any leading zero bytes.
|
|
* The returned array is either empty, or its 0-th element is non-zero,
|
|
* meeting the requirement for field mag (see comment on mag).
|
|
*
|
|
* The range [from, from + len) must be well-formed w.r.t. array a.
|
|
*
|
|
* b < -128 means that a[from] has not yet been read.
|
|
* Otherwise, b must be a[from], have been read only once before invoking
|
|
* this method, and len > 0 must hold.
|
|
*/
|
|
private static int[] stripLeadingZeroBytes(int b, byte[] a, int from, int len) {
|
|
/*
|
|
* Except for the first byte, each read access to the input array a
|
|
* is of the form a[from++].
|
|
* The index from is never otherwise altered, except right below,
|
|
* and only increases in steps of 1, always up to index to.
|
|
* Hence, each byte in the array is read exactly once, from lower to
|
|
* higher indices (from most to least significant byte).
|
|
*/
|
|
if (len == 0) {
|
|
return ZERO.mag;
|
|
}
|
|
int to = from + len;
|
|
if (b < -128) {
|
|
b = a[from];
|
|
}
|
|
/* Either way, a[from] has now been read exactly once, skip to next. */
|
|
++from;
|
|
/*
|
|
* Set up the shortest int[] for the sequence of the bytes
|
|
* b, a[from+1], ..., a[to-1] (len > 0)
|
|
* Shortest means first skipping leading zeros.
|
|
*/
|
|
for (; b == 0 && from < to; b = a[from++])
|
|
; //empty body
|
|
if (b == 0) {
|
|
/* Here, from == to as well. All bytes are zeros. */
|
|
return ZERO.mag;
|
|
}
|
|
/*
|
|
* Allocate just enough ints to hold (to - from + 1) bytes, that is
|
|
* ((to - from + 1) + 3) / 4 = (to - from) / 4 + 1
|
|
*/
|
|
int[] res = new int[((to - from) >> 2) + 1];
|
|
/*
|
|
* A is a group of 4 adjacent bytes aligned w.r.t. index to.
|
|
* (Implied 0 bytes are prepended as needed.)
|
|
* b is the most significant byte not 0.
|
|
* Digit d0 spans the range of indices that includes current (from - 1).
|
|
*/
|
|
int d0 = b & 0xFF;
|
|
while (((to - from) & 0x3) != 0) {
|
|
d0 = d0 << 8 | a[from++] & 0xFF;
|
|
}
|
|
res[0] = d0;
|
|
/*
|
|
* Prepare the remaining digits.
|
|
* (to - from) is a multiple of 4, so prepare an int for every 4 bytes.
|
|
* This is a candidate for Unsafe.copy[Swap]Memory().
|
|
*/
|
|
int i = 1;
|
|
while (from < to) {
|
|
res[i++] = a[from++] << 24 | (a[from++] & 0xFF) << 16
|
|
| (a[from++] & 0xFF) << 8 | (a[from++] & 0xFF);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Takes an array a representing a negative 2's-complement number and
|
|
* returns the minimal (no leading zero bytes) unsigned whose value is -a.
|
|
*
|
|
* len > 0 must hold.
|
|
* The range [from, from + len) must be well-formed w.r.t. array a.
|
|
* b is assumed to be the result of reading a[from] and to meet b < 0.
|
|
*/
|
|
private static int[] makePositive(int b, byte[] a, int from, int len) {
|
|
/*
|
|
* By assumption, b == a[from] < 0 and len > 0.
|
|
*
|
|
* First collect the bytes into the resulting array res.
|
|
* Then convert res to two's complement.
|
|
*
|
|
* Except for b == a[from], each read access to the input array a
|
|
* is of the form a[from++].
|
|
* The index from is never otherwise altered, except right below,
|
|
* and only increases in steps of 1, always up to index to.
|
|
* Hence, each byte in the array is read exactly once, from lower to
|
|
* higher indices (from most to least significant byte).
|
|
*/
|
|
int to = from + len;
|
|
/* b == a[from] has been read exactly once, skip to next index. */
|
|
++from;
|
|
/* Skip leading -1 bytes. */
|
|
for (; b == -1 && from < to; b = a[from++])
|
|
; //empty body
|
|
/*
|
|
* A is a group of 4 adjacent bytes aligned w.r.t. index to.
|
|
* b is the most significant byte not -1, or -1 only if from == to.
|
|
* Digit d0 spans the range of indices that includes current (from - 1).
|
|
* (Implied -1 bytes are prepended to array a as needed.)
|
|
* It usually corresponds to res[0], except for the special case below.
|
|
*/
|
|
int d0 = -1 << 8 | b & 0xFF;
|
|
while (((to - from) & 0x3) != 0) {
|
|
d0 = d0 << 8 | (b = a[from++]) & 0xFF;
|
|
}
|
|
int f = from; // keeps the current from for sizing purposes later
|
|
/* Skip zeros adjacent to d0, if at all. */
|
|
for (; b == 0 && from < to; b = a[from++])
|
|
; //empty body
|
|
/*
|
|
* b is the most significant non-zero byte at or after (f - 1),
|
|
* or 0 only if from == to.
|
|
* Digit d spans the range of indices that includes (f - 1).
|
|
*/
|
|
int d = b & 0xFF;
|
|
while (((to - from) & 0x3) != 0) {
|
|
d = d << 8 | a[from++] & 0xFF;
|
|
}
|
|
/*
|
|
* If the situation here is like this:
|
|
* index: f to == from
|
|
* ..., -1,-1, 0,0,0,0, 0,0,0,0, ..., 0,0,0,0
|
|
* digit: d0 d
|
|
* then, as shown, the number of zeros is a positive multiple of 4.
|
|
* The array res needs a minimal length of (1 + 1 + (to - f) / 4)
|
|
* to accommodate the two's complement, including a leading 1.
|
|
* In any other case, there is at least one byte that is non-zero.
|
|
* The array for the two's complement has length (0 + 1 + (to - f) / 4).
|
|
* c is 1, resp., 0 for the two situations.
|
|
*/
|
|
int c = (to - from | d0 | d) == 0 ? 1 : 0;
|
|
int[] res = new int[c + 1 + ((to - f) >> 2)];
|
|
res[0] = c == 0 ? d0 : -1;
|
|
int i = res.length - ((to - from) >> 2);
|
|
if (i > 1) {
|
|
res[i - 1] = d;
|
|
}
|
|
/*
|
|
* Prepare the remaining digits.
|
|
* (to - from) is a multiple of 4, so prepare an int for every 4 bytes.
|
|
* This is a candidate for Unsafe.copy[Swap]Memory().
|
|
*/
|
|
while (from < to) {
|
|
res[i++] = a[from++] << 24 | (a[from++] & 0xFF) << 16
|
|
| (a[from++] & 0xFF) << 8 | (a[from++] & 0xFF);
|
|
}
|
|
/* Convert to two's complement. Here, i == res.length */
|
|
while (--i >= 0 && res[i] == 0)
|
|
; // empty body
|
|
res[i] = -res[i];
|
|
while (--i >= 0) {
|
|
res[i] = ~res[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* Takes an array a representing a negative 2's-complement number and
|
|
* returns the minimal (no leading zero ints) unsigned whose value is -a.
|
|
*/
|
|
private static int[] makePositive(int[] a) {
|
|
int keep, j;
|
|
|
|
// Find first non-sign (0xffffffff) int of input
|
|
for (keep=0; keep < a.length && a[keep] == -1; keep++)
|
|
;
|
|
|
|
/* Allocate output array. If all non-sign ints are 0x00, we must
|
|
* allocate space for one extra output int. */
|
|
for (j=keep; j < a.length && a[j] == 0; j++)
|
|
;
|
|
int extraInt = (j == a.length ? 1 : 0);
|
|
int result[] = new int[a.length - keep + extraInt];
|
|
|
|
/* Copy one's complement of input into output, leaving extra
|
|
* int (if it exists) == 0x00 */
|
|
for (int i = keep; i < a.length; i++)
|
|
result[i - keep + extraInt] = ~a[i];
|
|
|
|
// Add one to one's complement to generate two's complement
|
|
for (int i=result.length-1; ++result[i] == 0; i--)
|
|
;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* The following two arrays are used for fast String conversions. Both
|
|
* are indexed by radix. The first is the number of digits of the given
|
|
* radix that can fit in a Java long without , i.e., the
|
|
* highest integer n such that radix**n < 2**63. The second is the
|
|
* , each of which
|
|
* consists of the number of digits in the corresponding element in
|
|
* digitsPerLong (longRadix[i] = i**digitPerLong[i]). Both arrays have
|
|
* nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
|
|
* used.
|
|
*/
|
|
private static int digitsPerLong[] = {0, 0,
|
|
62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
|
|
14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
|
|
|
|
private static BigInteger longRadix[] = {null, null,
|
|
valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
|
|
valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
|
|
valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
|
|
valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
|
|
valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
|
|
valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
|
|
valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
|
|
valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
|
|
valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
|
|
valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
|
|
valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
|
|
valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
|
|
valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
|
|
valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
|
|
valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
|
|
valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
|
|
valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
|
|
valueOf(0x41c21cb8e1000000L)};
|
|
|
|
/*
|
|
* These two arrays are the integer analogue of above.
|
|
*/
|
|
private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
|
|
11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
|
|
|
|
private static int intRadix[] = {0, 0,
|
|
0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
|
|
0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
|
|
0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f, 0x10000000,
|
|
0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
|
|
0x6c20a40, 0x8d2d931, 0xb640000, 0xe8d4a51, 0x1269ae40,
|
|
0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
|
|
0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
|
|
};
|
|
|
|
/**
|
|
* These routines provide access to the two's complement representation
|
|
* of BigIntegers.
|
|
*/
|
|
|
|
/**
|
|
* Returns the length of the two's complement representation in ints,
|
|
* including space for at least one sign bit.
|
|
*/
|
|
private int intLength() {
|
|
return (bitLength() >>> 5) + 1;
|
|
}
|
|
|
|
/* Returns sign bit */
|
|
private int signBit() {
|
|
return signum < 0 ? 1 : 0;
|
|
}
|
|
|
|
/* Returns an int of sign bits */
|
|
private int signInt() {
|
|
return signum < 0 ? -1 : 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the specified int of the little-endian two's complement
|
|
* representation (int 0 is the least significant). The int number can
|
|
* be arbitrarily high (values are logically preceded by infinitely many
|
|
* sign ints).
|
|
*/
|
|
private int getInt(int n) {
|
|
if (n < 0)
|
|
return 0;
|
|
if (n >= mag.length)
|
|
return signInt();
|
|
|
|
int magInt = mag[mag.length-n-1];
|
|
|
|
return (signum >= 0 ? magInt :
|
|
(n <= firstNonzeroIntNum() ? -magInt : ~magInt));
|
|
}
|
|
|
|
/**
|
|
* Returns the index of the int that contains the first nonzero int in the
|
|
* little-endian binary representation of the magnitude (int 0 is the
|
|
* least significant). If the magnitude is zero, return value is undefined.
|
|
*
|
|
* <p>Note: never used for a BigInteger with a magnitude of zero.
|
|
* @see #getInt
|
|
*/
|
|
private int firstNonzeroIntNum() {
|
|
int fn = firstNonzeroIntNumPlusTwo - 2;
|
|
if (fn == -2) { // firstNonzeroIntNum not initialized yet
|
|
// Search for the first nonzero int
|
|
int i;
|
|
int mlen = mag.length;
|
|
for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
|
|
;
|
|
fn = mlen - i - 1;
|
|
firstNonzeroIntNumPlusTwo = fn + 2; // offset by two to initialize
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/** use serialVersionUID from JDK 1.1. for interoperability */
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -8287574255936472291L;
|
|
|
|
/**
|
|
* Serializable fields for BigInteger.
|
|
*
|
|
* @serialField signum int
|
|
* signum of this BigInteger
|
|
* @serialField magnitude byte[]
|
|
* magnitude array of this BigInteger
|
|
* @serialField bitCount int
|
|
* appears in the serialized form for backward compatibility
|
|
* @serialField bitLength int
|
|
* appears in the serialized form for backward compatibility
|
|
* @serialField firstNonzeroByteNum int
|
|
* appears in the serialized form for backward compatibility
|
|
* @serialField lowestSetBit int
|
|
* appears in the serialized form for backward compatibility
|
|
*/
|
|
@java.io.Serial
|
|
private static final ObjectStreamField[] serialPersistentFields = {
|
|
new ObjectStreamField(, Integer.TYPE),
|
|
new ObjectStreamField(, byte[].class),
|
|
new ObjectStreamField(, Integer.TYPE),
|
|
new ObjectStreamField(, Integer.TYPE),
|
|
new ObjectStreamField(, Integer.TYPE),
|
|
new ObjectStreamField(, Integer.TYPE)
|
|
};
|
|
|
|
/**
|
|
* Reconstitute the {@code BigInteger} instance from a stream (that is,
|
|
* deserialize it). The magnitude is read in as an array of bytes
|
|
* for historical reasons, but it is converted to an array of ints
|
|
* and the byte array is discarded.
|
|
* Note:
|
|
* The current convention is to initialize the cache fields, bitCountPlusOne,
|
|
* bitLengthPlusOne and lowestSetBitPlusTwo, to 0 rather than some other
|
|
* marker value. Therefore, no explicit action to set these fields needs to
|
|
* be taken in readObject because those fields already have a 0 value by
|
|
* default since defaultReadObject is not being used.
|
|
*
|
|
* @param s the stream being read.
|
|
* @throws IOException if an I/O error occurs
|
|
* @throws ClassNotFoundException if a serialized class cannot be loaded
|
|
*/
|
|
@java.io.Serial
|
|
private void readObject(java.io.ObjectInputStream s)
|
|
throws java.io.IOException, ClassNotFoundException {
|
|
// prepare to read the alternate persistent fields
|
|
ObjectInputStream.GetField fields = s.readFields();
|
|
|
|
// Read and validate the alternate persistent fields that we
|
|
// care about, signum and magnitude
|
|
|
|
// Read and validate signum
|
|
int sign = fields.get(, -2);
|
|
if (sign < -1 || sign > 1) {
|
|
String message = ;
|
|
if (fields.defaulted())
|
|
message = ;
|
|
throw new java.io.StreamCorruptedException(message);
|
|
}
|
|
|
|
// Read and validate magnitude
|
|
byte[] magnitude = (byte[])fields.get(, null);
|
|
magnitude = magnitude.clone(); // defensive copy
|
|
int[] mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
|
|
if ((mag.length == 0) != (sign == 0)) {
|
|
String message = ;
|
|
if (fields.defaulted())
|
|
message = ;
|
|
throw new java.io.StreamCorruptedException(message);
|
|
}
|
|
|
|
// Equivalent to checkRange() on mag local without assigning
|
|
// this.mag field
|
|
if (mag.length > MAX_MAG_LENGTH ||
|
|
(mag.length == MAX_MAG_LENGTH && mag[0] < 0)) {
|
|
throw new java.io.StreamCorruptedException();
|
|
}
|
|
|
|
// Commit final fields via Unsafe
|
|
UnsafeHolder.putSignAndMag(this, sign, mag);
|
|
}
|
|
|
|
/**
|
|
* Serialization without data not supported for this class.
|
|
*/
|
|
@java.io.Serial
|
|
private void readObjectNoData()
|
|
throws ObjectStreamException {
|
|
throw new InvalidObjectException();
|
|
}
|
|
|
|
// Support for resetting final fields while deserializing
|
|
private static class UnsafeHolder {
|
|
private static final jdk.internal.misc.Unsafe unsafe
|
|
= jdk.internal.misc.Unsafe.getUnsafe();
|
|
private static final long signumOffset
|
|
= unsafe.objectFieldOffset(BigInteger.class, );
|
|
private static final long magOffset
|
|
= unsafe.objectFieldOffset(BigInteger.class, );
|
|
|
|
static void putSignAndMag(BigInteger bi, int sign, int[] magnitude) {
|
|
unsafe.putInt(bi, signumOffset, sign);
|
|
unsafe.putReference(bi, magOffset, magnitude);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Save the {@code BigInteger} instance to a stream. The magnitude of a
|
|
* {@code BigInteger} is serialized as a byte array for historical reasons.
|
|
* To maintain compatibility with older implementations, the integers
|
|
* -1, -1, -2, and -2 are written as the values of the obsolete fields
|
|
* {@code bitCount}, {@code bitLength}, {@code lowestSetBit}, and
|
|
* {@code firstNonzeroByteNum}, respectively. These values are compatible
|
|
* with older implementations, but will be ignored by current
|
|
* implementations.
|
|
*
|
|
* @param s the stream to serialize to.
|
|
* @throws IOException if an I/O error occurs
|
|
*/
|
|
@java.io.Serial
|
|
private void writeObject(ObjectOutputStream s) throws IOException {
|
|
// set the values of the Serializable fields
|
|
ObjectOutputStream.PutField fields = s.putFields();
|
|
fields.put(, signum);
|
|
fields.put(, magSerializedForm());
|
|
// The values written for cached fields are compatible with older
|
|
// versions, but are ignored in readObject so don't otherwise matter.
|
|
fields.put(, -1);
|
|
fields.put(, -1);
|
|
fields.put(, -2);
|
|
fields.put(, -2);
|
|
|
|
// save them
|
|
s.writeFields();
|
|
}
|
|
|
|
/**
|
|
* Returns the mag array as an array of bytes.
|
|
*/
|
|
private byte[] magSerializedForm() {
|
|
int len = mag.length;
|
|
|
|
int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
|
|
int byteLen = (bitLen + 7) >>> 3;
|
|
byte[] result = new byte[byteLen];
|
|
|
|
for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
|
|
i >= 0; i--) {
|
|
if (bytesCopied == 4) {
|
|
nextInt = mag[intIndex--];
|
|
bytesCopied = 1;
|
|
} else {
|
|
nextInt >>>= 8;
|
|
bytesCopied++;
|
|
}
|
|
result[i] = (byte)nextInt;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Converts this {@code BigInteger} to a {@code long}, checking
|
|
* for lost information. If the value of this {@code BigInteger}
|
|
* is out of the range of the {@code long} type, then an
|
|
* {@code ArithmeticException} is thrown.
|
|
*
|
|
* @return this {@code BigInteger} converted to a {@code long}.
|
|
* @throws ArithmeticException if the value of {@code this} will
|
|
* not exactly fit in a {@code long}.
|
|
* @see BigInteger#longValue
|
|
* @since 1.8
|
|
*/
|
|
public long longValueExact() {
|
|
if (mag.length <= 2 && bitLength() <= 63)
|
|
return longValue();
|
|
else
|
|
throw new ArithmeticException();
|
|
}
|
|
|
|
/**
|
|
* Converts this {@code BigInteger} to an {@code int}, checking
|
|
* for lost information. If the value of this {@code BigInteger}
|
|
* is out of the range of the {@code int} type, then an
|
|
* {@code ArithmeticException} is thrown.
|
|
*
|
|
* @return this {@code BigInteger} converted to an {@code int}.
|
|
* @throws ArithmeticException if the value of {@code this} will
|
|
* not exactly fit in an {@code int}.
|
|
* @see BigInteger#intValue
|
|
* @since 1.8
|
|
*/
|
|
public int intValueExact() {
|
|
if (mag.length <= 1 && bitLength() <= 31)
|
|
return intValue();
|
|
else
|
|
throw new ArithmeticException();
|
|
}
|
|
|
|
/**
|
|
* Converts this {@code BigInteger} to a {@code short}, checking
|
|
* for lost information. If the value of this {@code BigInteger}
|
|
* is out of the range of the {@code short} type, then an
|
|
* {@code ArithmeticException} is thrown.
|
|
*
|
|
* @return this {@code BigInteger} converted to a {@code short}.
|
|
* @throws ArithmeticException if the value of {@code this} will
|
|
* not exactly fit in a {@code short}.
|
|
* @see BigInteger#shortValue
|
|
* @since 1.8
|
|
*/
|
|
public short shortValueExact() {
|
|
if (mag.length <= 1 && bitLength() <= 31) {
|
|
int value = intValue();
|
|
if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE)
|
|
return shortValue();
|
|
}
|
|
throw new ArithmeticException();
|
|
}
|
|
|
|
/**
|
|
* Converts this {@code BigInteger} to a {@code byte}, checking
|
|
* for lost information. If the value of this {@code BigInteger}
|
|
* is out of the range of the {@code byte} type, then an
|
|
* {@code ArithmeticException} is thrown.
|
|
*
|
|
* @return this {@code BigInteger} converted to a {@code byte}.
|
|
* @throws ArithmeticException if the value of {@code this} will
|
|
* not exactly fit in a {@code byte}.
|
|
* @see BigInteger#byteValue
|
|
* @since 1.8
|
|
*/
|
|
public byte byteValueExact() {
|
|
if (mag.length <= 1 && bitLength() <= 31) {
|
|
int value = intValue();
|
|
if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE)
|
|
return byteValue();
|
|
}
|
|
throw new ArithmeticException();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.io;
|
|
|
|
import java.lang.invoke.MethodHandle;
|
|
import java.lang.invoke.MethodHandles;
|
|
import java.lang.invoke.MethodType;
|
|
import java.lang.reflect.Constructor;
|
|
import java.lang.reflect.Field;
|
|
import java.lang.reflect.InvocationTargetException;
|
|
import java.lang.reflect.RecordComponent;
|
|
import java.lang.reflect.UndeclaredThrowableException;
|
|
import java.lang.reflect.Member;
|
|
import java.lang.reflect.Method;
|
|
import java.lang.reflect.Modifier;
|
|
import java.lang.reflect.Proxy;
|
|
import java.security.AccessControlContext;
|
|
import java.security.AccessController;
|
|
import java.security.MessageDigest;
|
|
import java.security.NoSuchAlgorithmException;
|
|
import java.security.PermissionCollection;
|
|
import java.security.Permissions;
|
|
import java.security.PrivilegedAction;
|
|
import java.security.PrivilegedActionException;
|
|
import java.security.PrivilegedExceptionAction;
|
|
import java.security.ProtectionDomain;
|
|
import java.util.ArrayList;
|
|
import java.util.Arrays;
|
|
import java.util.Collections;
|
|
import java.util.Comparator;
|
|
import java.util.HashSet;
|
|
import java.util.Map;
|
|
import java.util.Set;
|
|
import java.util.concurrent.ConcurrentHashMap;
|
|
import jdk.internal.misc.Unsafe;
|
|
import jdk.internal.reflect.CallerSensitive;
|
|
import jdk.internal.reflect.Reflection;
|
|
import jdk.internal.reflect.ReflectionFactory;
|
|
import jdk.internal.access.SharedSecrets;
|
|
import jdk.internal.access.JavaSecurityAccess;
|
|
import jdk.internal.util.ByteArray;
|
|
import sun.reflect.misc.ReflectUtil;
|
|
|
|
/**
|
|
* Serialization's descriptor for classes. It contains the name and
|
|
* serialVersionUID of the class. The ObjectStreamClass for a specific class
|
|
* loaded in this Java VM can be found/created using the lookup method.
|
|
*
|
|
* <p>The algorithm to compute the SerialVersionUID is described in
|
|
* <a href=>
|
|
* <cite>Java Object Serialization Specification,</cite> Section 4.6, </a>.
|
|
*
|
|
* @spec serialization/index.html Java Object Serialization Specification
|
|
* @author Mike Warres
|
|
* @author Roger Riggs
|
|
* @see ObjectStreamField
|
|
* @see <a href=>
|
|
* <cite>Java Object Serialization Specification,</cite> Section 4, </a>
|
|
* @since 1.1
|
|
*/
|
|
public final class ObjectStreamClass implements Serializable {
|
|
|
|
/** serialPersistentFields value indicating no serializable fields */
|
|
public static final ObjectStreamField[] NO_FIELDS =
|
|
new ObjectStreamField[0];
|
|
|
|
@java.io.Serial
|
|
private static final long serialVersionUID = -6120832682080437368L;
|
|
/**
|
|
* {@code ObjectStreamClass} has no fields for default serialization.
|
|
*/
|
|
@java.io.Serial
|
|
private static final ObjectStreamField[] serialPersistentFields =
|
|
NO_FIELDS;
|
|
|
|
/** reflection factory for obtaining serialization constructors */
|
|
@SuppressWarnings()
|
|
private static final ReflectionFactory reflFactory =
|
|
AccessController.doPrivileged(
|
|
new ReflectionFactory.GetReflectionFactoryAction());
|
|
|
|
private static class Caches {
|
|
/** cache mapping local classes -> descriptors */
|
|
static final ClassCache<ObjectStreamClass> localDescs =
|
|
new ClassCache<>() {
|
|
@Override
|
|
protected ObjectStreamClass computeValue(Class<?> type) {
|
|
return new ObjectStreamClass(type);
|
|
}
|
|
};
|
|
|
|
/** cache mapping field group/local desc pairs -> field reflectors */
|
|
static final ClassCache<Map<FieldReflectorKey, FieldReflector>> reflectors =
|
|
new ClassCache<>() {
|
|
@Override
|
|
protected Map<FieldReflectorKey, FieldReflector> computeValue(Class<?> type) {
|
|
return new ConcurrentHashMap<>();
|
|
}
|
|
};
|
|
}
|
|
|
|
/** class associated with this descriptor (if any) */
|
|
private Class<?> cl;
|
|
/** name of class represented by this descriptor */
|
|
private String name;
|
|
/** serialVersionUID of represented class (null if not computed yet) */
|
|
private volatile Long suid;
|
|
|
|
/** true if represents dynamic proxy class */
|
|
private boolean isProxy;
|
|
/** true if represents enum type */
|
|
private boolean isEnum;
|
|
/** true if represents record type */
|
|
private boolean isRecord;
|
|
/** true if represented class implements Serializable */
|
|
private boolean serializable;
|
|
/** true if represented class implements Externalizable */
|
|
private boolean externalizable;
|
|
/** true if desc has data written by class-defined writeObject method */
|
|
private boolean hasWriteObjectData;
|
|
/**
|
|
* true if desc has externalizable data written in block data format; this
|
|
* must be true by default to accommodate ObjectInputStream subclasses which
|
|
* override readClassDescriptor() to return class descriptors obtained from
|
|
* ObjectStreamClass.lookup() (see 4461737)
|
|
*/
|
|
private boolean hasBlockExternalData = true;
|
|
|
|
/**
|
|
* Contains information about InvalidClassException instances to be thrown
|
|
* when attempting operations on an invalid class. Note that instances of
|
|
* this class are immutable and are potentially shared among
|
|
* ObjectStreamClass instances.
|
|
*/
|
|
private static class ExceptionInfo {
|
|
private final String className;
|
|
private final String message;
|
|
|
|
ExceptionInfo(String cn, String msg) {
|
|
className = cn;
|
|
message = msg;
|
|
}
|
|
|
|
/**
|
|
* Returns (does not throw) an InvalidClassException instance created
|
|
* from the information in this object, suitable for being thrown by
|
|
* the caller.
|
|
*/
|
|
InvalidClassException newInvalidClassException() {
|
|
return new InvalidClassException(className, message);
|
|
}
|
|
}
|
|
|
|
/** exception (if any) thrown while attempting to resolve class */
|
|
private ClassNotFoundException resolveEx;
|
|
/** exception (if any) to throw if non-enum deserialization attempted */
|
|
private ExceptionInfo deserializeEx;
|
|
/** exception (if any) to throw if non-enum serialization attempted */
|
|
private ExceptionInfo serializeEx;
|
|
/** exception (if any) to throw if default serialization attempted */
|
|
private ExceptionInfo defaultSerializeEx;
|
|
|
|
/** serializable fields */
|
|
private ObjectStreamField[] fields;
|
|
/** aggregate marshalled size of primitive fields */
|
|
private int primDataSize;
|
|
/** number of non-primitive fields */
|
|
private int numObjFields;
|
|
/** reflector for setting/getting serializable field values */
|
|
private FieldReflector fieldRefl;
|
|
/** data layout of serialized objects described by this class desc */
|
|
private volatile ClassDataSlot[] dataLayout;
|
|
|
|
/** serialization-appropriate constructor, or null if none */
|
|
private Constructor<?> cons;
|
|
/** record canonical constructor (shared among OSCs for same class), or null */
|
|
private MethodHandle canonicalCtr;
|
|
/** cache of record deserialization constructors per unique set of stream fields
|
|
* (shared among OSCs for same class), or null */
|
|
private DeserializationConstructorsCache deserializationCtrs;
|
|
/** session-cache of record deserialization constructor
|
|
* (in de-serialized OSC only), or null */
|
|
private MethodHandle deserializationCtr;
|
|
/** protection domains that need to be checked when calling the constructor */
|
|
private ProtectionDomain[] domains;
|
|
|
|
/** class-defined writeObject method, or null if none */
|
|
private Method writeObjectMethod;
|
|
/** class-defined readObject method, or null if none */
|
|
private Method readObjectMethod;
|
|
/** class-defined readObjectNoData method, or null if none */
|
|
private Method readObjectNoDataMethod;
|
|
/** class-defined writeReplace method, or null if none */
|
|
private Method writeReplaceMethod;
|
|
/** class-defined readResolve method, or null if none */
|
|
private Method readResolveMethod;
|
|
|
|
/** local class descriptor for represented class (may point to self) */
|
|
private ObjectStreamClass localDesc;
|
|
/** superclass descriptor appearing in stream */
|
|
private ObjectStreamClass superDesc;
|
|
|
|
/** true if, and only if, the object has been correctly initialized */
|
|
private boolean initialized;
|
|
|
|
/**
|
|
* Initializes native code.
|
|
*/
|
|
private static native void initNative();
|
|
static {
|
|
initNative();
|
|
}
|
|
|
|
/**
|
|
* Find the descriptor for a class that can be serialized. Creates an
|
|
* ObjectStreamClass instance if one does not exist yet for class. Null is
|
|
* returned if the specified class does not implement java.io.Serializable
|
|
* or java.io.Externalizable.
|
|
*
|
|
* @param cl class for which to get the descriptor
|
|
* @return the class descriptor for the specified class
|
|
*/
|
|
public static ObjectStreamClass lookup(Class<?> cl) {
|
|
return lookup(cl, false);
|
|
}
|
|
|
|
/**
|
|
* Returns the descriptor for any class, regardless of whether it
|
|
* implements {@link Serializable}.
|
|
*
|
|
* @param cl class for which to get the descriptor
|
|
* @return the class descriptor for the specified class
|
|
* @since 1.6
|
|
*/
|
|
public static ObjectStreamClass lookupAny(Class<?> cl) {
|
|
return lookup(cl, true);
|
|
}
|
|
|
|
/**
|
|
* Returns the name of the class described by this descriptor.
|
|
* This method returns the name of the class in the format that
|
|
* is used by the {@link Class#getName} method.
|
|
*
|
|
* @return a string representing the name of the class
|
|
*/
|
|
public String getName() {
|
|
return name;
|
|
}
|
|
|
|
/**
|
|
* Return the serialVersionUID for this class. The serialVersionUID
|
|
* defines a set of classes all with the same name that have evolved from a
|
|
* common root class and agree to be serialized and deserialized using a
|
|
* common format. NonSerializable classes have a serialVersionUID of 0L.
|
|
*
|
|
* @return the SUID of the class described by this descriptor
|
|
*/
|
|
@SuppressWarnings()
|
|
public long getSerialVersionUID() {
|
|
// REMIND: synchronize instead of relying on volatile?
|
|
if (suid == null) {
|
|
if (isRecord)
|
|
return 0L;
|
|
|
|
suid = AccessController.doPrivileged(
|
|
new PrivilegedAction<Long>() {
|
|
public Long run() {
|
|
return computeDefaultSUID(cl);
|
|
}
|
|
}
|
|
);
|
|
}
|
|
return suid.longValue();
|
|
}
|
|
|
|
/**
|
|
* Return the class in the local VM that this version is mapped to. Null
|
|
* is returned if there is no corresponding local class.
|
|
*
|
|
* @return the {@code Class} instance that this descriptor represents
|
|
*/
|
|
@SuppressWarnings()
|
|
@CallerSensitive
|
|
public Class<?> forClass() {
|
|
if (cl == null) {
|
|
return null;
|
|
}
|
|
requireInitialized();
|
|
if (System.getSecurityManager() != null) {
|
|
Class<?> caller = Reflection.getCallerClass();
|
|
if (ReflectUtil.needsPackageAccessCheck(caller.getClassLoader(), cl.getClassLoader())) {
|
|
ReflectUtil.checkPackageAccess(cl);
|
|
}
|
|
}
|
|
return cl;
|
|
}
|
|
|
|
/**
|
|
* Return an array of the fields of this serializable class.
|
|
*
|
|
* @return an array containing an element for each persistent field of
|
|
* this class. Returns an array of length zero if there are no
|
|
* fields.
|
|
* @since 1.2
|
|
*/
|
|
public ObjectStreamField[] getFields() {
|
|
return getFields(true);
|
|
}
|
|
|
|
/**
|
|
* Get the field of this class by name.
|
|
*
|
|
* @param name the name of the data field to look for
|
|
* @return The ObjectStreamField object of the named field or null if
|
|
* there is no such named field.
|
|
*/
|
|
public ObjectStreamField getField(String name) {
|
|
return getField(name, null);
|
|
}
|
|
|
|
/**
|
|
* Return a string describing this ObjectStreamClass.
|
|
*/
|
|
public String toString() {
|
|
return name + +
|
|
getSerialVersionUID() + ;
|
|
}
|
|
|
|
/**
|
|
* Looks up and returns class descriptor for given class, or null if class
|
|
* is non-serializable and is set to false.
|
|
*
|
|
* @param cl class to look up
|
|
* @param all if true, return descriptors for all classes; if false, only
|
|
* return descriptors for serializable classes
|
|
*/
|
|
static ObjectStreamClass lookup(Class<?> cl, boolean all) {
|
|
if (!(all || Serializable.class.isAssignableFrom(cl))) {
|
|
return null;
|
|
}
|
|
return Caches.localDescs.get(cl);
|
|
}
|
|
|
|
/**
|
|
* Creates local class descriptor representing given class.
|
|
*/
|
|
@SuppressWarnings()
|
|
private ObjectStreamClass(final Class<?> cl) {
|
|
this.cl = cl;
|
|
name = cl.getName();
|
|
isProxy = Proxy.isProxyClass(cl);
|
|
isEnum = Enum.class.isAssignableFrom(cl);
|
|
isRecord = cl.isRecord();
|
|
serializable = Serializable.class.isAssignableFrom(cl);
|
|
externalizable = Externalizable.class.isAssignableFrom(cl);
|
|
|
|
Class<?> superCl = cl.getSuperclass();
|
|
superDesc = (superCl != null) ? lookup(superCl, false) : null;
|
|
localDesc = this;
|
|
|
|
if (serializable) {
|
|
AccessController.doPrivileged(new PrivilegedAction<>() {
|
|
public Void run() {
|
|
if (isEnum) {
|
|
suid = 0L;
|
|
fields = NO_FIELDS;
|
|
return null;
|
|
}
|
|
if (cl.isArray()) {
|
|
fields = NO_FIELDS;
|
|
return null;
|
|
}
|
|
|
|
suid = getDeclaredSUID(cl);
|
|
try {
|
|
fields = getSerialFields(cl);
|
|
computeFieldOffsets();
|
|
} catch (InvalidClassException e) {
|
|
serializeEx = deserializeEx =
|
|
new ExceptionInfo(e.classname, e.getMessage());
|
|
fields = NO_FIELDS;
|
|
}
|
|
|
|
if (isRecord) {
|
|
canonicalCtr = canonicalRecordCtr(cl);
|
|
deserializationCtrs = new DeserializationConstructorsCache();
|
|
} else if (externalizable) {
|
|
cons = getExternalizableConstructor(cl);
|
|
} else {
|
|
cons = getSerializableConstructor(cl);
|
|
writeObjectMethod = getPrivateMethod(cl, ,
|
|
new Class<?>[] { ObjectOutputStream.class },
|
|
Void.TYPE);
|
|
readObjectMethod = getPrivateMethod(cl, ,
|
|
new Class<?>[] { ObjectInputStream.class },
|
|
Void.TYPE);
|
|
readObjectNoDataMethod = getPrivateMethod(
|
|
cl, , null, Void.TYPE);
|
|
hasWriteObjectData = (writeObjectMethod != null);
|
|
}
|
|
domains = getProtectionDomains(cons, cl);
|
|
writeReplaceMethod = getInheritableMethod(
|
|
cl, , null, Object.class);
|
|
readResolveMethod = getInheritableMethod(
|
|
cl, , null, Object.class);
|
|
return null;
|
|
}
|
|
});
|
|
} else {
|
|
suid = 0L;
|
|
fields = NO_FIELDS;
|
|
}
|
|
|
|
try {
|
|
fieldRefl = getReflector(fields, this);
|
|
} catch (InvalidClassException ex) {
|
|
// field mismatches impossible when matching local fields vs. self
|
|
throw new InternalError(ex);
|
|
}
|
|
|
|
if (deserializeEx == null) {
|
|
if (isEnum) {
|
|
deserializeEx = new ExceptionInfo(name, );
|
|
} else if (cons == null && !isRecord) {
|
|
deserializeEx = new ExceptionInfo(name, );
|
|
}
|
|
}
|
|
if (isRecord && canonicalCtr == null) {
|
|
deserializeEx = new ExceptionInfo(name, );
|
|
} else {
|
|
for (int i = 0; i < fields.length; i++) {
|
|
if (fields[i].getField() == null) {
|
|
defaultSerializeEx = new ExceptionInfo(
|
|
name, );
|
|
}
|
|
}
|
|
}
|
|
initialized = true;
|
|
}
|
|
|
|
/**
|
|
* Creates blank class descriptor which should be initialized via a
|
|
* subsequent call to initProxy(), initNonProxy() or readNonProxy().
|
|
*/
|
|
ObjectStreamClass() {
|
|
}
|
|
|
|
/**
|
|
* Creates a PermissionDomain that grants no permission.
|
|
*/
|
|
private ProtectionDomain noPermissionsDomain() {
|
|
PermissionCollection perms = new Permissions();
|
|
perms.setReadOnly();
|
|
return new ProtectionDomain(null, perms);
|
|
}
|
|
|
|
/**
|
|
* Aggregate the ProtectionDomains of all the classes that separate
|
|
* a concrete class {@code cl} from its ancestor's class declaring
|
|
* a constructor {@code cons}.
|
|
*
|
|
* If {@code cl} is defined by the boot loader, or the constructor
|
|
* {@code cons} is declared by {@code cl}, or if there is no security
|
|
* manager, then this method does nothing and {@code null} is returned.
|
|
*
|
|
* @param cons A constructor declared by {@code cl} or one of its
|
|
* ancestors.
|
|
* @param cl A concrete class, which is either the class declaring
|
|
* the constructor {@code cons}, or a serializable subclass
|
|
* of that class.
|
|
* @return An array of ProtectionDomain representing the set of
|
|
* ProtectionDomain that separate the concrete class {@code cl}
|
|
* from its ancestor's declaring {@code cons}, or {@code null}.
|
|
*/
|
|
@SuppressWarnings()
|
|
private ProtectionDomain[] getProtectionDomains(Constructor<?> cons,
|
|
Class<?> cl) {
|
|
ProtectionDomain[] domains = null;
|
|
if (cons != null && cl.getClassLoader() != null
|
|
&& System.getSecurityManager() != null) {
|
|
Class<?> cls = cl;
|
|
Class<?> fnscl = cons.getDeclaringClass();
|
|
Set<ProtectionDomain> pds = null;
|
|
while (cls != fnscl) {
|
|
ProtectionDomain pd = cls.getProtectionDomain();
|
|
if (pd != null) {
|
|
if (pds == null) pds = new HashSet<>();
|
|
pds.add(pd);
|
|
}
|
|
cls = cls.getSuperclass();
|
|
if (cls == null) {
|
|
// that's not supposed to happen
|
|
// make a ProtectionDomain with no permission.
|
|
// should we throw instead?
|
|
if (pds == null) pds = new HashSet<>();
|
|
else pds.clear();
|
|
pds.add(noPermissionsDomain());
|
|
break;
|
|
}
|
|
}
|
|
if (pds != null) {
|
|
domains = pds.toArray(new ProtectionDomain[0]);
|
|
}
|
|
}
|
|
return domains;
|
|
}
|
|
|
|
/**
|
|
* Initializes class descriptor representing a proxy class.
|
|
*/
|
|
void initProxy(Class<?> cl,
|
|
ClassNotFoundException resolveEx,
|
|
ObjectStreamClass superDesc)
|
|
throws InvalidClassException
|
|
{
|
|
ObjectStreamClass osc = null;
|
|
if (cl != null) {
|
|
osc = lookup(cl, true);
|
|
if (!osc.isProxy) {
|
|
throw new InvalidClassException(
|
|
);
|
|
}
|
|
}
|
|
this.cl = cl;
|
|
this.resolveEx = resolveEx;
|
|
this.superDesc = superDesc;
|
|
isProxy = true;
|
|
serializable = true;
|
|
suid = 0L;
|
|
fields = NO_FIELDS;
|
|
if (osc != null) {
|
|
localDesc = osc;
|
|
name = localDesc.name;
|
|
externalizable = localDesc.externalizable;
|
|
writeReplaceMethod = localDesc.writeReplaceMethod;
|
|
readResolveMethod = localDesc.readResolveMethod;
|
|
deserializeEx = localDesc.deserializeEx;
|
|
domains = localDesc.domains;
|
|
cons = localDesc.cons;
|
|
}
|
|
fieldRefl = getReflector(fields, localDesc);
|
|
initialized = true;
|
|
}
|
|
|
|
/**
|
|
* Initializes class descriptor representing a non-proxy class.
|
|
*/
|
|
void initNonProxy(ObjectStreamClass model,
|
|
Class<?> cl,
|
|
ClassNotFoundException resolveEx,
|
|
ObjectStreamClass superDesc)
|
|
throws InvalidClassException
|
|
{
|
|
long suid = model.getSerialVersionUID();
|
|
ObjectStreamClass osc = null;
|
|
if (cl != null) {
|
|
osc = lookup(cl, true);
|
|
if (osc.isProxy) {
|
|
throw new InvalidClassException(
|
|
);
|
|
}
|
|
if (model.isEnum != osc.isEnum) {
|
|
throw new InvalidClassException(model.isEnum ?
|
|
:
|
|
);
|
|
}
|
|
|
|
if (model.serializable == osc.serializable &&
|
|
!cl.isArray() && !cl.isRecord() &&
|
|
suid != osc.getSerialVersionUID()) {
|
|
throw new InvalidClassException(osc.name,
|
|
+
|
|
+ suid +
|
|
+
|
|
osc.getSerialVersionUID());
|
|
}
|
|
|
|
if (!classNamesEqual(model.name, osc.name)) {
|
|
throw new InvalidClassException(osc.name,
|
|
+
|
|
);
|
|
}
|
|
|
|
if (!model.isEnum) {
|
|
if ((model.serializable == osc.serializable) &&
|
|
(model.externalizable != osc.externalizable)) {
|
|
throw new InvalidClassException(osc.name,
|
|
);
|
|
}
|
|
|
|
if ((model.serializable != osc.serializable) ||
|
|
(model.externalizable != osc.externalizable) ||
|
|
!(model.serializable || model.externalizable)) {
|
|
deserializeEx = new ExceptionInfo(
|
|
osc.name, );
|
|
}
|
|
}
|
|
}
|
|
|
|
this.cl = cl;
|
|
this.resolveEx = resolveEx;
|
|
this.superDesc = superDesc;
|
|
name = model.name;
|
|
this.suid = suid;
|
|
isProxy = false;
|
|
isEnum = model.isEnum;
|
|
serializable = model.serializable;
|
|
externalizable = model.externalizable;
|
|
hasBlockExternalData = model.hasBlockExternalData;
|
|
hasWriteObjectData = model.hasWriteObjectData;
|
|
fields = model.fields;
|
|
primDataSize = model.primDataSize;
|
|
numObjFields = model.numObjFields;
|
|
|
|
if (osc != null) {
|
|
localDesc = osc;
|
|
isRecord = localDesc.isRecord;
|
|
// canonical record constructor is shared
|
|
canonicalCtr = localDesc.canonicalCtr;
|
|
// cache of deserialization constructors is shared
|
|
deserializationCtrs = localDesc.deserializationCtrs;
|
|
writeObjectMethod = localDesc.writeObjectMethod;
|
|
readObjectMethod = localDesc.readObjectMethod;
|
|
readObjectNoDataMethod = localDesc.readObjectNoDataMethod;
|
|
writeReplaceMethod = localDesc.writeReplaceMethod;
|
|
readResolveMethod = localDesc.readResolveMethod;
|
|
if (deserializeEx == null) {
|
|
deserializeEx = localDesc.deserializeEx;
|
|
}
|
|
domains = localDesc.domains;
|
|
assert cl.isRecord() ? localDesc.cons == null : true;
|
|
cons = localDesc.cons;
|
|
}
|
|
|
|
fieldRefl = getReflector(fields, localDesc);
|
|
// reassign to matched fields so as to reflect local unshared settings
|
|
fields = fieldRefl.getFields();
|
|
|
|
initialized = true;
|
|
}
|
|
|
|
/**
|
|
* Reads non-proxy class descriptor information from given input stream.
|
|
* The resulting class descriptor is not fully functional; it can only be
|
|
* used as input to the ObjectInputStream.resolveClass() and
|
|
* ObjectStreamClass.initNonProxy() methods.
|
|
*/
|
|
void readNonProxy(ObjectInputStream in)
|
|
throws IOException, ClassNotFoundException
|
|
{
|
|
name = in.readUTF();
|
|
suid = in.readLong();
|
|
isProxy = false;
|
|
|
|
byte flags = in.readByte();
|
|
hasWriteObjectData =
|
|
((flags & ObjectStreamConstants.SC_WRITE_METHOD) != 0);
|
|
hasBlockExternalData =
|
|
((flags & ObjectStreamConstants.SC_BLOCK_DATA) != 0);
|
|
externalizable =
|
|
((flags & ObjectStreamConstants.SC_EXTERNALIZABLE) != 0);
|
|
boolean sflag =
|
|
((flags & ObjectStreamConstants.SC_SERIALIZABLE) != 0);
|
|
if (externalizable && sflag) {
|
|
throw new InvalidClassException(
|
|
name, );
|
|
}
|
|
serializable = externalizable || sflag;
|
|
isEnum = ((flags & ObjectStreamConstants.SC_ENUM) != 0);
|
|
if (isEnum && suid.longValue() != 0L) {
|
|
throw new InvalidClassException(name,
|
|
+ suid);
|
|
}
|
|
|
|
int numFields = in.readShort();
|
|
if (isEnum && numFields != 0) {
|
|
throw new InvalidClassException(name,
|
|
+ numFields);
|
|
}
|
|
fields = (numFields > 0) ?
|
|
new ObjectStreamField[numFields] : NO_FIELDS;
|
|
for (int i = 0; i < numFields; i++) {
|
|
char tcode = (char) in.readByte();
|
|
String fname = in.readUTF();
|
|
String signature = ((tcode == 'L') || (tcode == '[')) ?
|
|
in.readTypeString() : String.valueOf(tcode);
|
|
try {
|
|
fields[i] = new ObjectStreamField(fname, signature, false);
|
|
} catch (RuntimeException e) {
|
|
throw new InvalidClassException(name,
|
|
+
|
|
fname, e);
|
|
}
|
|
}
|
|
computeFieldOffsets();
|
|
}
|
|
|
|
/**
|
|
* Writes non-proxy class descriptor information to given output stream.
|
|
*/
|
|
void writeNonProxy(ObjectOutputStream out) throws IOException {
|
|
out.writeUTF(name);
|
|
out.writeLong(getSerialVersionUID());
|
|
|
|
byte flags = 0;
|
|
if (externalizable) {
|
|
flags |= ObjectStreamConstants.SC_EXTERNALIZABLE;
|
|
int protocol = out.getProtocolVersion();
|
|
if (protocol != ObjectStreamConstants.PROTOCOL_VERSION_1) {
|
|
flags |= ObjectStreamConstants.SC_BLOCK_DATA;
|
|
}
|
|
} else if (serializable) {
|
|
flags |= ObjectStreamConstants.SC_SERIALIZABLE;
|
|
}
|
|
if (hasWriteObjectData) {
|
|
flags |= ObjectStreamConstants.SC_WRITE_METHOD;
|
|
}
|
|
if (isEnum) {
|
|
flags |= ObjectStreamConstants.SC_ENUM;
|
|
}
|
|
out.writeByte(flags);
|
|
|
|
out.writeShort(fields.length);
|
|
for (int i = 0; i < fields.length; i++) {
|
|
ObjectStreamField f = fields[i];
|
|
out.writeByte(f.getTypeCode());
|
|
out.writeUTF(f.getName());
|
|
if (!f.isPrimitive()) {
|
|
out.writeTypeString(f.getTypeString());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns ClassNotFoundException (if any) thrown while attempting to
|
|
* resolve local class corresponding to this class descriptor.
|
|
*/
|
|
ClassNotFoundException getResolveException() {
|
|
return resolveEx;
|
|
}
|
|
|
|
/**
|
|
* Throws InternalError if not initialized.
|
|
*/
|
|
private final void requireInitialized() {
|
|
if (!initialized)
|
|
throw new InternalError();
|
|
}
|
|
|
|
/**
|
|
* Throws InvalidClassException if not initialized.
|
|
* To be called in cases where an uninitialized class descriptor indicates
|
|
* a problem in the serialization stream.
|
|
*/
|
|
final void checkInitialized() throws InvalidClassException {
|
|
if (!initialized) {
|
|
throw new InvalidClassException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Throws an InvalidClassException if object instances referencing this
|
|
* class descriptor should not be allowed to deserialize. This method does
|
|
* not apply to deserialization of enum constants.
|
|
*/
|
|
void checkDeserialize() throws InvalidClassException {
|
|
requireInitialized();
|
|
if (deserializeEx != null) {
|
|
throw deserializeEx.newInvalidClassException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Throws an InvalidClassException if objects whose class is represented by
|
|
* this descriptor should not be allowed to serialize. This method does
|
|
* not apply to serialization of enum constants.
|
|
*/
|
|
void checkSerialize() throws InvalidClassException {
|
|
requireInitialized();
|
|
if (serializeEx != null) {
|
|
throw serializeEx.newInvalidClassException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Throws an InvalidClassException if objects whose class is represented by
|
|
* this descriptor should not be permitted to use default serialization
|
|
* (e.g., if the class declares serializable fields that do not correspond
|
|
* to actual fields, and hence must use the GetField API). This method
|
|
* does not apply to deserialization of enum constants.
|
|
*/
|
|
void checkDefaultSerialize() throws InvalidClassException {
|
|
requireInitialized();
|
|
if (defaultSerializeEx != null) {
|
|
throw defaultSerializeEx.newInvalidClassException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns superclass descriptor. Note that on the receiving side, the
|
|
* superclass descriptor may be bound to a class that is not a superclass
|
|
* of the subclass descriptor's bound class.
|
|
*/
|
|
ObjectStreamClass getSuperDesc() {
|
|
requireInitialized();
|
|
return superDesc;
|
|
}
|
|
|
|
/**
|
|
* Returns the class descriptor for the class associated with this
|
|
* class descriptor (i.e., the result of
|
|
* ObjectStreamClass.lookup(this.forClass())) or null if there is no class
|
|
* associated with this descriptor.
|
|
*/
|
|
ObjectStreamClass getLocalDesc() {
|
|
requireInitialized();
|
|
return localDesc;
|
|
}
|
|
|
|
/**
|
|
* Returns arrays of ObjectStreamFields representing the serializable
|
|
* fields of the represented class. If copy is true, a clone of this class
|
|
* descriptor's field array is returned, otherwise the array itself is
|
|
* returned.
|
|
*/
|
|
ObjectStreamField[] getFields(boolean copy) {
|
|
return copy ? fields.clone() : fields;
|
|
}
|
|
|
|
/**
|
|
* Looks up a serializable field of the represented class by name and type.
|
|
* A specified type of null matches all types, Object.class matches all
|
|
* non-primitive types, and any other non-null type matches assignable
|
|
* types only. Returns matching field, or null if no match found.
|
|
*/
|
|
ObjectStreamField getField(String name, Class<?> type) {
|
|
for (int i = 0; i < fields.length; i++) {
|
|
ObjectStreamField f = fields[i];
|
|
if (f.getName().equals(name)) {
|
|
if (type == null ||
|
|
(type == Object.class && !f.isPrimitive()))
|
|
{
|
|
return f;
|
|
}
|
|
Class<?> ftype = f.getType();
|
|
if (ftype != null && type.isAssignableFrom(ftype)) {
|
|
return f;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Returns true if class descriptor represents a dynamic proxy class, false
|
|
* otherwise.
|
|
*/
|
|
boolean isProxy() {
|
|
requireInitialized();
|
|
return isProxy;
|
|
}
|
|
|
|
/**
|
|
* Returns true if class descriptor represents an enum type, false
|
|
* otherwise.
|
|
*/
|
|
boolean isEnum() {
|
|
requireInitialized();
|
|
return isEnum;
|
|
}
|
|
|
|
/**
|
|
* Returns true if class descriptor represents a record type, false
|
|
* otherwise.
|
|
*/
|
|
boolean isRecord() {
|
|
requireInitialized();
|
|
return isRecord;
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class implements Externalizable, false
|
|
* otherwise.
|
|
*/
|
|
boolean isExternalizable() {
|
|
requireInitialized();
|
|
return externalizable;
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class implements Serializable, false
|
|
* otherwise.
|
|
*/
|
|
boolean isSerializable() {
|
|
requireInitialized();
|
|
return serializable;
|
|
}
|
|
|
|
/**
|
|
* Returns true if class descriptor represents externalizable class that
|
|
* has written its data in 1.2 (block data) format, false otherwise.
|
|
*/
|
|
boolean hasBlockExternalData() {
|
|
requireInitialized();
|
|
return hasBlockExternalData;
|
|
}
|
|
|
|
/**
|
|
* Returns true if class descriptor represents serializable (but not
|
|
* externalizable) class which has written its data via a custom
|
|
* writeObject() method, false otherwise.
|
|
*/
|
|
boolean hasWriteObjectData() {
|
|
requireInitialized();
|
|
return hasWriteObjectData;
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class is serializable/externalizable and can
|
|
* be instantiated by the serialization runtime--i.e., if it is
|
|
* externalizable and defines a public no-arg constructor, or if it is
|
|
* non-externalizable and its first non-serializable superclass defines an
|
|
* accessible no-arg constructor. Otherwise, returns false.
|
|
*/
|
|
boolean isInstantiable() {
|
|
requireInitialized();
|
|
return (cons != null);
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class is serializable (but not
|
|
* externalizable) and defines a conformant writeObject method. Otherwise,
|
|
* returns false.
|
|
*/
|
|
boolean hasWriteObjectMethod() {
|
|
requireInitialized();
|
|
return (writeObjectMethod != null);
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class is serializable (but not
|
|
* externalizable) and defines a conformant readObject method. Otherwise,
|
|
* returns false.
|
|
*/
|
|
boolean hasReadObjectMethod() {
|
|
requireInitialized();
|
|
return (readObjectMethod != null);
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class is serializable (but not
|
|
* externalizable) and defines a conformant readObjectNoData method.
|
|
* Otherwise, returns false.
|
|
*/
|
|
boolean hasReadObjectNoDataMethod() {
|
|
requireInitialized();
|
|
return (readObjectNoDataMethod != null);
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class is serializable or externalizable and
|
|
* defines a conformant writeReplace method. Otherwise, returns false.
|
|
*/
|
|
boolean hasWriteReplaceMethod() {
|
|
requireInitialized();
|
|
return (writeReplaceMethod != null);
|
|
}
|
|
|
|
/**
|
|
* Returns true if represented class is serializable or externalizable and
|
|
* defines a conformant readResolve method. Otherwise, returns false.
|
|
*/
|
|
boolean hasReadResolveMethod() {
|
|
requireInitialized();
|
|
return (readResolveMethod != null);
|
|
}
|
|
|
|
/**
|
|
* Creates a new instance of the represented class. If the class is
|
|
* externalizable, invokes its public no-arg constructor; otherwise, if the
|
|
* class is serializable, invokes the no-arg constructor of the first
|
|
* non-serializable superclass. Throws UnsupportedOperationException if
|
|
* this class descriptor is not associated with a class, if the associated
|
|
* class is non-serializable or if the appropriate no-arg constructor is
|
|
* inaccessible/unavailable.
|
|
*/
|
|
@SuppressWarnings()
|
|
Object newInstance()
|
|
throws InstantiationException, InvocationTargetException,
|
|
UnsupportedOperationException
|
|
{
|
|
requireInitialized();
|
|
if (cons != null) {
|
|
try {
|
|
if (domains == null || domains.length == 0) {
|
|
return cons.newInstance();
|
|
} else {
|
|
JavaSecurityAccess jsa = SharedSecrets.getJavaSecurityAccess();
|
|
PrivilegedAction<?> pea = () -> {
|
|
try {
|
|
return cons.newInstance();
|
|
} catch (InstantiationException
|
|
| InvocationTargetException
|
|
| IllegalAccessException x) {
|
|
throw new UndeclaredThrowableException(x);
|
|
}
|
|
}; // Can't use PrivilegedExceptionAction with jsa
|
|
try {
|
|
return jsa.doIntersectionPrivilege(pea,
|
|
AccessController.getContext(),
|
|
new AccessControlContext(domains));
|
|
} catch (UndeclaredThrowableException x) {
|
|
Throwable cause = x.getCause();
|
|
if (cause instanceof InstantiationException ie)
|
|
throw ie;
|
|
if (cause instanceof InvocationTargetException ite)
|
|
throw ite;
|
|
if (cause instanceof IllegalAccessException iae)
|
|
throw iae;
|
|
// not supposed to happen
|
|
throw x;
|
|
}
|
|
}
|
|
} catch (IllegalAccessException ex) {
|
|
// should not occur, as access checks have been suppressed
|
|
throw new InternalError(ex);
|
|
} catch (InvocationTargetException ex) {
|
|
Throwable cause = ex.getCause();
|
|
if (cause instanceof Error err)
|
|
throw err;
|
|
else
|
|
throw ex;
|
|
} catch (InstantiationError err) {
|
|
var ex = new InstantiationException();
|
|
ex.initCause(err);
|
|
throw ex;
|
|
}
|
|
} else {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Invokes the writeObject method of the represented serializable class.
|
|
* Throws UnsupportedOperationException if this class descriptor is not
|
|
* associated with a class, or if the class is externalizable,
|
|
* non-serializable or does not define writeObject.
|
|
*/
|
|
void invokeWriteObject(Object obj, ObjectOutputStream out)
|
|
throws IOException, UnsupportedOperationException
|
|
{
|
|
requireInitialized();
|
|
if (writeObjectMethod != null) {
|
|
try {
|
|
writeObjectMethod.invoke(obj, new Object[]{ out });
|
|
} catch (InvocationTargetException ex) {
|
|
Throwable th = ex.getCause();
|
|
if (th instanceof IOException) {
|
|
throw (IOException) th;
|
|
} else {
|
|
throwMiscException(th);
|
|
}
|
|
} catch (IllegalAccessException ex) {
|
|
// should not occur, as access checks have been suppressed
|
|
throw new InternalError(ex);
|
|
}
|
|
} else {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Invokes the readObject method of the represented serializable class.
|
|
* Throws UnsupportedOperationException if this class descriptor is not
|
|
* associated with a class, or if the class is externalizable,
|
|
* non-serializable or does not define readObject.
|
|
*/
|
|
void invokeReadObject(Object obj, ObjectInputStream in)
|
|
throws ClassNotFoundException, IOException,
|
|
UnsupportedOperationException
|
|
{
|
|
requireInitialized();
|
|
if (readObjectMethod != null) {
|
|
try {
|
|
readObjectMethod.invoke(obj, new Object[]{ in });
|
|
} catch (InvocationTargetException ex) {
|
|
Throwable th = ex.getCause();
|
|
if (th instanceof ClassNotFoundException) {
|
|
throw (ClassNotFoundException) th;
|
|
} else if (th instanceof IOException) {
|
|
throw (IOException) th;
|
|
} else {
|
|
throwMiscException(th);
|
|
}
|
|
} catch (IllegalAccessException ex) {
|
|
// should not occur, as access checks have been suppressed
|
|
throw new InternalError(ex);
|
|
}
|
|
} else {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Invokes the readObjectNoData method of the represented serializable
|
|
* class. Throws UnsupportedOperationException if this class descriptor is
|
|
* not associated with a class, or if the class is externalizable,
|
|
* non-serializable or does not define readObjectNoData.
|
|
*/
|
|
void invokeReadObjectNoData(Object obj)
|
|
throws IOException, UnsupportedOperationException
|
|
{
|
|
requireInitialized();
|
|
if (readObjectNoDataMethod != null) {
|
|
try {
|
|
readObjectNoDataMethod.invoke(obj, (Object[]) null);
|
|
} catch (InvocationTargetException ex) {
|
|
Throwable th = ex.getCause();
|
|
if (th instanceof ObjectStreamException) {
|
|
throw (ObjectStreamException) th;
|
|
} else {
|
|
throwMiscException(th);
|
|
}
|
|
} catch (IllegalAccessException ex) {
|
|
// should not occur, as access checks have been suppressed
|
|
throw new InternalError(ex);
|
|
}
|
|
} else {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Invokes the writeReplace method of the represented serializable class and
|
|
* returns the result. Throws UnsupportedOperationException if this class
|
|
* descriptor is not associated with a class, or if the class is
|
|
* non-serializable or does not define writeReplace.
|
|
*/
|
|
Object invokeWriteReplace(Object obj)
|
|
throws IOException, UnsupportedOperationException
|
|
{
|
|
requireInitialized();
|
|
if (writeReplaceMethod != null) {
|
|
try {
|
|
return writeReplaceMethod.invoke(obj, (Object[]) null);
|
|
} catch (InvocationTargetException ex) {
|
|
Throwable th = ex.getCause();
|
|
if (th instanceof ObjectStreamException) {
|
|
throw (ObjectStreamException) th;
|
|
} else {
|
|
throwMiscException(th);
|
|
throw new InternalError(th); // never reached
|
|
}
|
|
} catch (IllegalAccessException ex) {
|
|
// should not occur, as access checks have been suppressed
|
|
throw new InternalError(ex);
|
|
}
|
|
} else {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Invokes the readResolve method of the represented serializable class and
|
|
* returns the result. Throws UnsupportedOperationException if this class
|
|
* descriptor is not associated with a class, or if the class is
|
|
* non-serializable or does not define readResolve.
|
|
*/
|
|
Object invokeReadResolve(Object obj)
|
|
throws IOException, UnsupportedOperationException
|
|
{
|
|
requireInitialized();
|
|
if (readResolveMethod != null) {
|
|
try {
|
|
return readResolveMethod.invoke(obj, (Object[]) null);
|
|
} catch (InvocationTargetException ex) {
|
|
Throwable th = ex.getCause();
|
|
if (th instanceof ObjectStreamException) {
|
|
throw (ObjectStreamException) th;
|
|
} else {
|
|
throwMiscException(th);
|
|
throw new InternalError(th); // never reached
|
|
}
|
|
} catch (IllegalAccessException ex) {
|
|
// should not occur, as access checks have been suppressed
|
|
throw new InternalError(ex);
|
|
}
|
|
} else {
|
|
throw new UnsupportedOperationException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Class representing the portion of an object's serialized form allotted
|
|
* to data described by a given class descriptor. If is false,
|
|
* the object's serialized form does not contain data associated with the
|
|
* class descriptor.
|
|
*/
|
|
static class ClassDataSlot {
|
|
|
|
/** class descriptor this slot */
|
|
final ObjectStreamClass desc;
|
|
/** true if serialized form includes data for this slot's descriptor */
|
|
final boolean hasData;
|
|
|
|
ClassDataSlot(ObjectStreamClass desc, boolean hasData) {
|
|
this.desc = desc;
|
|
this.hasData = hasData;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns array of ClassDataSlot instances representing the data layout
|
|
* (including superclass data) for serialized objects described by this
|
|
* class descriptor. ClassDataSlots are ordered by inheritance with those
|
|
* containing superclasses appearing first. The final
|
|
* ClassDataSlot contains a reference to this descriptor.
|
|
*/
|
|
ClassDataSlot[] getClassDataLayout() throws InvalidClassException {
|
|
// REMIND: synchronize instead of relying on volatile?
|
|
if (dataLayout == null) {
|
|
dataLayout = getClassDataLayout0();
|
|
}
|
|
return dataLayout;
|
|
}
|
|
|
|
private ClassDataSlot[] getClassDataLayout0()
|
|
throws InvalidClassException
|
|
{
|
|
ArrayList<ClassDataSlot> slots = new ArrayList<>();
|
|
Class<?> start = cl, end = cl;
|
|
|
|
// locate closest non-serializable superclass
|
|
while (end != null && Serializable.class.isAssignableFrom(end)) {
|
|
end = end.getSuperclass();
|
|
}
|
|
|
|
HashSet<String> oscNames = new HashSet<>(3);
|
|
|
|
for (ObjectStreamClass d = this; d != null; d = d.superDesc) {
|
|
if (oscNames.contains(d.name)) {
|
|
throw new InvalidClassException();
|
|
} else {
|
|
oscNames.add(d.name);
|
|
}
|
|
|
|
// search up inheritance hierarchy for class with matching name
|
|
String searchName = (d.cl != null) ? d.cl.getName() : d.name;
|
|
Class<?> match = null;
|
|
for (Class<?> c = start; c != end; c = c.getSuperclass()) {
|
|
if (searchName.equals(c.getName())) {
|
|
match = c;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// add slot for each unmatched class below match
|
|
if (match != null) {
|
|
for (Class<?> c = start; c != match; c = c.getSuperclass()) {
|
|
slots.add(new ClassDataSlot(
|
|
ObjectStreamClass.lookup(c, true), false));
|
|
}
|
|
start = match.getSuperclass();
|
|
}
|
|
|
|
// record descriptor/class pairing
|
|
slots.add(new ClassDataSlot(d.getVariantFor(match), true));
|
|
}
|
|
|
|
// add slot for any leftover unmatched classes
|
|
for (Class<?> c = start; c != end; c = c.getSuperclass()) {
|
|
slots.add(new ClassDataSlot(
|
|
ObjectStreamClass.lookup(c, true), false));
|
|
}
|
|
|
|
// order slots from superclass -> subclass
|
|
Collections.reverse(slots);
|
|
return slots.toArray(new ClassDataSlot[slots.size()]);
|
|
}
|
|
|
|
/**
|
|
* Returns aggregate size (in bytes) of marshalled primitive field values
|
|
* for represented class.
|
|
*/
|
|
int getPrimDataSize() {
|
|
return primDataSize;
|
|
}
|
|
|
|
/**
|
|
* Returns number of non-primitive serializable fields of represented
|
|
* class.
|
|
*/
|
|
int getNumObjFields() {
|
|
return numObjFields;
|
|
}
|
|
|
|
/**
|
|
* Fetches the serializable primitive field values of object obj and
|
|
* marshals them into byte array buf starting at offset 0. It is the
|
|
* responsibility of the caller to ensure that obj is of the proper type if
|
|
* non-null.
|
|
*/
|
|
void getPrimFieldValues(Object obj, byte[] buf) {
|
|
fieldRefl.getPrimFieldValues(obj, buf);
|
|
}
|
|
|
|
/**
|
|
* Sets the serializable primitive fields of object obj using values
|
|
* unmarshalled from byte array buf starting at offset 0. It is the
|
|
* responsibility of the caller to ensure that obj is of the proper type if
|
|
* non-null.
|
|
*/
|
|
void setPrimFieldValues(Object obj, byte[] buf) {
|
|
fieldRefl.setPrimFieldValues(obj, buf);
|
|
}
|
|
|
|
/**
|
|
* Fetches the serializable object field values of object obj and stores
|
|
* them in array vals starting at offset 0. It is the responsibility of
|
|
* the caller to ensure that obj is of the proper type if non-null.
|
|
*/
|
|
void getObjFieldValues(Object obj, Object[] vals) {
|
|
fieldRefl.getObjFieldValues(obj, vals);
|
|
}
|
|
|
|
/**
|
|
* Checks that the given values, from array vals starting at offset 0,
|
|
* are assignable to the given serializable object fields.
|
|
* @throws ClassCastException if any value is not assignable
|
|
*/
|
|
void checkObjFieldValueTypes(Object obj, Object[] vals) {
|
|
fieldRefl.checkObjectFieldValueTypes(obj, vals);
|
|
}
|
|
|
|
/**
|
|
* Sets the serializable object fields of object obj using values from
|
|
* array vals starting at offset 0. It is the responsibility of the caller
|
|
* to ensure that obj is of the proper type if non-null.
|
|
*/
|
|
void setObjFieldValues(Object obj, Object[] vals) {
|
|
fieldRefl.setObjFieldValues(obj, vals);
|
|
}
|
|
|
|
/**
|
|
* Calculates and sets serializable field offsets, as well as primitive
|
|
* data size and object field count totals. Throws InvalidClassException
|
|
* if fields are illegally ordered.
|
|
*/
|
|
private void computeFieldOffsets() throws InvalidClassException {
|
|
primDataSize = 0;
|
|
numObjFields = 0;
|
|
int firstObjIndex = -1;
|
|
|
|
for (int i = 0; i < fields.length; i++) {
|
|
ObjectStreamField f = fields[i];
|
|
switch (f.getTypeCode()) {
|
|
case 'Z', 'B' -> f.setOffset(primDataSize++);
|
|
case 'C', 'S' -> {
|
|
f.setOffset(primDataSize);
|
|
primDataSize += 2;
|
|
}
|
|
case 'I', 'F' -> {
|
|
f.setOffset(primDataSize);
|
|
primDataSize += 4;
|
|
}
|
|
case 'J', 'D' -> {
|
|
f.setOffset(primDataSize);
|
|
primDataSize += 8;
|
|
}
|
|
case '[', 'L' -> {
|
|
f.setOffset(numObjFields++);
|
|
if (firstObjIndex == -1) {
|
|
firstObjIndex = i;
|
|
}
|
|
}
|
|
default -> throw new InternalError();
|
|
}
|
|
}
|
|
if (firstObjIndex != -1 &&
|
|
firstObjIndex + numObjFields != fields.length)
|
|
{
|
|
throw new InvalidClassException(name, );
|
|
}
|
|
}
|
|
|
|
/**
|
|
* If given class is the same as the class associated with this class
|
|
* descriptor, returns reference to this class descriptor. Otherwise,
|
|
* returns variant of this class descriptor bound to given class.
|
|
*/
|
|
private ObjectStreamClass getVariantFor(Class<?> cl)
|
|
throws InvalidClassException
|
|
{
|
|
if (this.cl == cl) {
|
|
return this;
|
|
}
|
|
ObjectStreamClass desc = new ObjectStreamClass();
|
|
if (isProxy) {
|
|
desc.initProxy(cl, null, superDesc);
|
|
} else {
|
|
desc.initNonProxy(this, cl, null, superDesc);
|
|
}
|
|
return desc;
|
|
}
|
|
|
|
/**
|
|
* Returns public no-arg constructor of given class, or null if none found.
|
|
* Access checks are disabled on the returned constructor (if any), since
|
|
* the defining class may still be non-public.
|
|
*/
|
|
private static Constructor<?> getExternalizableConstructor(Class<?> cl) {
|
|
try {
|
|
Constructor<?> cons = cl.getDeclaredConstructor((Class<?>[]) null);
|
|
cons.setAccessible(true);
|
|
return ((cons.getModifiers() & Modifier.PUBLIC) != 0) ?
|
|
cons : null;
|
|
} catch (NoSuchMethodException ex) {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns subclass-accessible no-arg constructor of first non-serializable
|
|
* superclass, or null if none found. Access checks are disabled on the
|
|
* returned constructor (if any).
|
|
*/
|
|
private static Constructor<?> getSerializableConstructor(Class<?> cl) {
|
|
return reflFactory.newConstructorForSerialization(cl);
|
|
}
|
|
|
|
/**
|
|
* Returns the canonical constructor for the given record class, or null if
|
|
* the not found ( which should never happen for correctly generated record
|
|
* classes ).
|
|
*/
|
|
@SuppressWarnings()
|
|
private static MethodHandle canonicalRecordCtr(Class<?> cls) {
|
|
assert cls.isRecord() : + cls;
|
|
PrivilegedAction<MethodHandle> pa = () -> {
|
|
Class<?>[] paramTypes = Arrays.stream(cls.getRecordComponents())
|
|
.map(RecordComponent::getType)
|
|
.toArray(Class<?>[]::new);
|
|
try {
|
|
Constructor<?> ctr = cls.getDeclaredConstructor(paramTypes);
|
|
ctr.setAccessible(true);
|
|
return MethodHandles.lookup().unreflectConstructor(ctr);
|
|
} catch (IllegalAccessException | NoSuchMethodException e) {
|
|
return null;
|
|
}
|
|
};
|
|
return AccessController.doPrivileged(pa);
|
|
}
|
|
|
|
/**
|
|
* Returns the canonical constructor, if the local class equivalent of this
|
|
* stream class descriptor is a record class, otherwise null.
|
|
*/
|
|
MethodHandle getRecordConstructor() {
|
|
return canonicalCtr;
|
|
}
|
|
|
|
/**
|
|
* Returns non-static, non-abstract method with given signature provided it
|
|
* is defined by or accessible (via inheritance) by the given class, or
|
|
* null if no match found. Access checks are disabled on the returned
|
|
* method (if any).
|
|
*/
|
|
private static Method getInheritableMethod(Class<?> cl, String name,
|
|
Class<?>[] argTypes,
|
|
Class<?> returnType)
|
|
{
|
|
Method meth = null;
|
|
Class<?> defCl = cl;
|
|
while (defCl != null) {
|
|
try {
|
|
meth = defCl.getDeclaredMethod(name, argTypes);
|
|
break;
|
|
} catch (NoSuchMethodException ex) {
|
|
defCl = defCl.getSuperclass();
|
|
}
|
|
}
|
|
|
|
if ((meth == null) || (meth.getReturnType() != returnType)) {
|
|
return null;
|
|
}
|
|
meth.setAccessible(true);
|
|
int mods = meth.getModifiers();
|
|
if ((mods & (Modifier.STATIC | Modifier.ABSTRACT)) != 0) {
|
|
return null;
|
|
} else if ((mods & (Modifier.PUBLIC | Modifier.PROTECTED)) != 0) {
|
|
return meth;
|
|
} else if ((mods & Modifier.PRIVATE) != 0) {
|
|
return (cl == defCl) ? meth : null;
|
|
} else {
|
|
return packageEquals(cl, defCl) ? meth : null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns non-static private method with given signature defined by given
|
|
* class, or null if none found. Access checks are disabled on the
|
|
* returned method (if any).
|
|
*/
|
|
private static Method getPrivateMethod(Class<?> cl, String name,
|
|
Class<?>[] argTypes,
|
|
Class<?> returnType)
|
|
{
|
|
try {
|
|
Method meth = cl.getDeclaredMethod(name, argTypes);
|
|
meth.setAccessible(true);
|
|
int mods = meth.getModifiers();
|
|
return ((meth.getReturnType() == returnType) &&
|
|
((mods & Modifier.STATIC) == 0) &&
|
|
((mods & Modifier.PRIVATE) != 0)) ? meth : null;
|
|
} catch (NoSuchMethodException ex) {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns true if classes are defined in the same runtime package, false
|
|
* otherwise.
|
|
*/
|
|
private static boolean packageEquals(Class<?> cl1, Class<?> cl2) {
|
|
return cl1.getClassLoader() == cl2.getClassLoader() &&
|
|
cl1.getPackageName() == cl2.getPackageName();
|
|
}
|
|
|
|
/**
|
|
* Compares class names for equality, ignoring package names. Returns true
|
|
* if class names equal, false otherwise.
|
|
*/
|
|
private static boolean classNamesEqual(String name1, String name2) {
|
|
int idx1 = name1.lastIndexOf('.') + 1;
|
|
int idx2 = name2.lastIndexOf('.') + 1;
|
|
int len1 = name1.length() - idx1;
|
|
int len2 = name2.length() - idx2;
|
|
return len1 == len2 &&
|
|
name1.regionMatches(idx1, name2, idx2, len1);
|
|
}
|
|
|
|
/**
|
|
* Returns JVM type signature for given list of parameters and return type.
|
|
*/
|
|
private static String getMethodSignature(Class<?>[] paramTypes,
|
|
Class<?> retType)
|
|
{
|
|
StringBuilder sb = new StringBuilder();
|
|
sb.append('(');
|
|
for (int i = 0; i < paramTypes.length; i++) {
|
|
sb.append(paramTypes[i].descriptorString());
|
|
}
|
|
sb.append(')');
|
|
sb.append(retType.descriptorString());
|
|
return sb.toString();
|
|
}
|
|
|
|
/**
|
|
* Convenience method for throwing an exception that is either a
|
|
* RuntimeException, Error, or of some unexpected type (in which case it is
|
|
* wrapped inside an IOException).
|
|
*/
|
|
private static void throwMiscException(Throwable th) throws IOException {
|
|
if (th instanceof RuntimeException) {
|
|
throw (RuntimeException) th;
|
|
} else if (th instanceof Error) {
|
|
throw (Error) th;
|
|
} else {
|
|
throw new IOException(, th);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns ObjectStreamField array describing the serializable fields of
|
|
* the given class. Serializable fields backed by an actual field of the
|
|
* class are represented by ObjectStreamFields with corresponding non-null
|
|
* Field objects. Throws InvalidClassException if the (explicitly
|
|
* declared) serializable fields are invalid.
|
|
*/
|
|
private static ObjectStreamField[] getSerialFields(Class<?> cl)
|
|
throws InvalidClassException
|
|
{
|
|
if (!Serializable.class.isAssignableFrom(cl))
|
|
return NO_FIELDS;
|
|
|
|
ObjectStreamField[] fields;
|
|
if (cl.isRecord()) {
|
|
fields = getDefaultSerialFields(cl);
|
|
Arrays.sort(fields);
|
|
} else if (!Externalizable.class.isAssignableFrom(cl) &&
|
|
!Proxy.isProxyClass(cl) &&
|
|
!cl.isInterface()) {
|
|
if ((fields = getDeclaredSerialFields(cl)) == null) {
|
|
fields = getDefaultSerialFields(cl);
|
|
}
|
|
Arrays.sort(fields);
|
|
} else {
|
|
fields = NO_FIELDS;
|
|
}
|
|
return fields;
|
|
}
|
|
|
|
/**
|
|
* Returns serializable fields of given class as defined explicitly by a
|
|
* field, or null if no appropriate
|
|
* field is defined. Serializable fields backed
|
|
* by an actual field of the class are represented by ObjectStreamFields
|
|
* with corresponding non-null Field objects. For compatibility with past
|
|
* releases, a field with a null value is
|
|
* considered equivalent to not declaring . Throws
|
|
* InvalidClassException if the declared serializable fields are
|
|
* invalid--e.g., if multiple fields share the same name.
|
|
*/
|
|
private static ObjectStreamField[] getDeclaredSerialFields(Class<?> cl)
|
|
throws InvalidClassException
|
|
{
|
|
ObjectStreamField[] serialPersistentFields = null;
|
|
try {
|
|
Field f = cl.getDeclaredField();
|
|
int mask = Modifier.PRIVATE | Modifier.STATIC | Modifier.FINAL;
|
|
if ((f.getModifiers() & mask) == mask) {
|
|
f.setAccessible(true);
|
|
serialPersistentFields = (ObjectStreamField[]) f.get(null);
|
|
}
|
|
} catch (Exception ex) {
|
|
}
|
|
if (serialPersistentFields == null) {
|
|
return null;
|
|
} else if (serialPersistentFields.length == 0) {
|
|
return NO_FIELDS;
|
|
}
|
|
|
|
ObjectStreamField[] boundFields =
|
|
new ObjectStreamField[serialPersistentFields.length];
|
|
Set<String> fieldNames = HashSet.newHashSet(serialPersistentFields.length);
|
|
|
|
for (int i = 0; i < serialPersistentFields.length; i++) {
|
|
ObjectStreamField spf = serialPersistentFields[i];
|
|
|
|
String fname = spf.getName();
|
|
if (fieldNames.contains(fname)) {
|
|
throw new InvalidClassException(
|
|
+ fname);
|
|
}
|
|
fieldNames.add(fname);
|
|
|
|
try {
|
|
Field f = cl.getDeclaredField(fname);
|
|
if ((f.getType() == spf.getType()) &&
|
|
((f.getModifiers() & Modifier.STATIC) == 0))
|
|
{
|
|
boundFields[i] =
|
|
new ObjectStreamField(f, spf.isUnshared(), true);
|
|
}
|
|
} catch (NoSuchFieldException ex) {
|
|
}
|
|
if (boundFields[i] == null) {
|
|
boundFields[i] = new ObjectStreamField(
|
|
fname, spf.getType(), spf.isUnshared());
|
|
}
|
|
}
|
|
return boundFields;
|
|
}
|
|
|
|
/**
|
|
* Returns array of ObjectStreamFields corresponding to all non-static
|
|
* non-transient fields declared by given class. Each ObjectStreamField
|
|
* contains a Field object for the field it represents. If no default
|
|
* serializable fields exist, NO_FIELDS is returned.
|
|
*/
|
|
private static ObjectStreamField[] getDefaultSerialFields(Class<?> cl) {
|
|
Field[] clFields = cl.getDeclaredFields();
|
|
ArrayList<ObjectStreamField> list = new ArrayList<>();
|
|
int mask = Modifier.STATIC | Modifier.TRANSIENT;
|
|
|
|
for (int i = 0; i < clFields.length; i++) {
|
|
if ((clFields[i].getModifiers() & mask) == 0) {
|
|
list.add(new ObjectStreamField(clFields[i], false, true));
|
|
}
|
|
}
|
|
int size = list.size();
|
|
return (size == 0) ? NO_FIELDS :
|
|
list.toArray(new ObjectStreamField[size]);
|
|
}
|
|
|
|
/**
|
|
* Returns explicit serial version UID value declared by given class, or
|
|
* null if none.
|
|
*/
|
|
private static Long getDeclaredSUID(Class<?> cl) {
|
|
try {
|
|
Field f = cl.getDeclaredField();
|
|
int mask = Modifier.STATIC | Modifier.FINAL;
|
|
if ((f.getModifiers() & mask) == mask) {
|
|
f.setAccessible(true);
|
|
return f.getLong(null);
|
|
}
|
|
} catch (Exception ex) {
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Computes the default serial version UID value for the given class.
|
|
*/
|
|
private static long computeDefaultSUID(Class<?> cl) {
|
|
if (!Serializable.class.isAssignableFrom(cl) || Proxy.isProxyClass(cl))
|
|
{
|
|
return 0L;
|
|
}
|
|
|
|
try {
|
|
ByteArrayOutputStream bout = new ByteArrayOutputStream();
|
|
DataOutputStream dout = new DataOutputStream(bout);
|
|
|
|
dout.writeUTF(cl.getName());
|
|
|
|
int classMods = cl.getModifiers() &
|
|
(Modifier.PUBLIC | Modifier.FINAL |
|
|
Modifier.INTERFACE | Modifier.ABSTRACT);
|
|
|
|
/*
|
|
* compensate for javac bug in which ABSTRACT bit was set for an
|
|
* interface only if the interface declared methods
|
|
*/
|
|
Method[] methods = cl.getDeclaredMethods();
|
|
if ((classMods & Modifier.INTERFACE) != 0) {
|
|
classMods = (methods.length > 0) ?
|
|
(classMods | Modifier.ABSTRACT) :
|
|
(classMods & ~Modifier.ABSTRACT);
|
|
}
|
|
dout.writeInt(classMods);
|
|
|
|
if (!cl.isArray()) {
|
|
/*
|
|
* compensate for change in 1.2FCS in which
|
|
* Class.getInterfaces() was modified to return Cloneable and
|
|
* Serializable for array classes.
|
|
*/
|
|
Class<?>[] interfaces = cl.getInterfaces();
|
|
String[] ifaceNames = new String[interfaces.length];
|
|
for (int i = 0; i < interfaces.length; i++) {
|
|
ifaceNames[i] = interfaces[i].getName();
|
|
}
|
|
Arrays.sort(ifaceNames);
|
|
for (int i = 0; i < ifaceNames.length; i++) {
|
|
dout.writeUTF(ifaceNames[i]);
|
|
}
|
|
}
|
|
|
|
Field[] fields = cl.getDeclaredFields();
|
|
MemberSignature[] fieldSigs = new MemberSignature[fields.length];
|
|
for (int i = 0; i < fields.length; i++) {
|
|
fieldSigs[i] = new MemberSignature(fields[i]);
|
|
}
|
|
Arrays.sort(fieldSigs, new Comparator<>() {
|
|
public int compare(MemberSignature ms1, MemberSignature ms2) {
|
|
return ms1.name.compareTo(ms2.name);
|
|
}
|
|
});
|
|
for (int i = 0; i < fieldSigs.length; i++) {
|
|
MemberSignature sig = fieldSigs[i];
|
|
int mods = sig.member.getModifiers() &
|
|
(Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED |
|
|
Modifier.STATIC | Modifier.FINAL | Modifier.VOLATILE |
|
|
Modifier.TRANSIENT);
|
|
if (((mods & Modifier.PRIVATE) == 0) ||
|
|
((mods & (Modifier.STATIC | Modifier.TRANSIENT)) == 0))
|
|
{
|
|
dout.writeUTF(sig.name);
|
|
dout.writeInt(mods);
|
|
dout.writeUTF(sig.signature);
|
|
}
|
|
}
|
|
|
|
if (hasStaticInitializer(cl)) {
|
|
dout.writeUTF();
|
|
dout.writeInt(Modifier.STATIC);
|
|
dout.writeUTF();
|
|
}
|
|
|
|
Constructor<?>[] cons = cl.getDeclaredConstructors();
|
|
MemberSignature[] consSigs = new MemberSignature[cons.length];
|
|
for (int i = 0; i < cons.length; i++) {
|
|
consSigs[i] = new MemberSignature(cons[i]);
|
|
}
|
|
Arrays.sort(consSigs, new Comparator<>() {
|
|
public int compare(MemberSignature ms1, MemberSignature ms2) {
|
|
return ms1.signature.compareTo(ms2.signature);
|
|
}
|
|
});
|
|
for (int i = 0; i < consSigs.length; i++) {
|
|
MemberSignature sig = consSigs[i];
|
|
int mods = sig.member.getModifiers() &
|
|
(Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED |
|
|
Modifier.STATIC | Modifier.FINAL |
|
|
Modifier.SYNCHRONIZED | Modifier.NATIVE |
|
|
Modifier.ABSTRACT | Modifier.STRICT);
|
|
if ((mods & Modifier.PRIVATE) == 0) {
|
|
dout.writeUTF();
|
|
dout.writeInt(mods);
|
|
dout.writeUTF(sig.signature.replace('/', '.'));
|
|
}
|
|
}
|
|
|
|
MemberSignature[] methSigs = new MemberSignature[methods.length];
|
|
for (int i = 0; i < methods.length; i++) {
|
|
methSigs[i] = new MemberSignature(methods[i]);
|
|
}
|
|
Arrays.sort(methSigs, new Comparator<>() {
|
|
public int compare(MemberSignature ms1, MemberSignature ms2) {
|
|
int comp = ms1.name.compareTo(ms2.name);
|
|
if (comp == 0) {
|
|
comp = ms1.signature.compareTo(ms2.signature);
|
|
}
|
|
return comp;
|
|
}
|
|
});
|
|
for (int i = 0; i < methSigs.length; i++) {
|
|
MemberSignature sig = methSigs[i];
|
|
int mods = sig.member.getModifiers() &
|
|
(Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED |
|
|
Modifier.STATIC | Modifier.FINAL |
|
|
Modifier.SYNCHRONIZED | Modifier.NATIVE |
|
|
Modifier.ABSTRACT | Modifier.STRICT);
|
|
if ((mods & Modifier.PRIVATE) == 0) {
|
|
dout.writeUTF(sig.name);
|
|
dout.writeInt(mods);
|
|
dout.writeUTF(sig.signature.replace('/', '.'));
|
|
}
|
|
}
|
|
|
|
dout.flush();
|
|
|
|
MessageDigest md = MessageDigest.getInstance();
|
|
byte[] hashBytes = md.digest(bout.toByteArray());
|
|
long hash = 0;
|
|
for (int i = Math.min(hashBytes.length, 8) - 1; i >= 0; i--) {
|
|
hash = (hash << 8) | (hashBytes[i] & 0xFF);
|
|
}
|
|
return hash;
|
|
} catch (IOException ex) {
|
|
throw new InternalError(ex);
|
|
} catch (NoSuchAlgorithmException ex) {
|
|
throw new SecurityException(ex.getMessage());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns true if the given class defines a static initializer method,
|
|
* false otherwise.
|
|
*/
|
|
private static native boolean hasStaticInitializer(Class<?> cl);
|
|
|
|
/**
|
|
* Class for computing and caching field/constructor/method signatures
|
|
* during serialVersionUID calculation.
|
|
*/
|
|
private static final class MemberSignature {
|
|
|
|
public final Member member;
|
|
public final String name;
|
|
public final String signature;
|
|
|
|
public MemberSignature(Field field) {
|
|
member = field;
|
|
name = field.getName();
|
|
signature = field.getType().descriptorString();
|
|
}
|
|
|
|
public MemberSignature(Constructor<?> cons) {
|
|
member = cons;
|
|
name = cons.getName();
|
|
signature = getMethodSignature(
|
|
cons.getParameterTypes(), Void.TYPE);
|
|
}
|
|
|
|
public MemberSignature(Method meth) {
|
|
member = meth;
|
|
name = meth.getName();
|
|
signature = getMethodSignature(
|
|
meth.getParameterTypes(), meth.getReturnType());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Class for setting and retrieving serializable field values in batch.
|
|
*/
|
|
// REMIND: dynamically generate these?
|
|
private static final class FieldReflector {
|
|
|
|
/** handle for performing unsafe operations */
|
|
private static final Unsafe UNSAFE = Unsafe.getUnsafe();
|
|
|
|
/** fields to operate on */
|
|
private final ObjectStreamField[] fields;
|
|
/** number of primitive fields */
|
|
private final int numPrimFields;
|
|
/** unsafe field keys for reading fields - may contain dupes */
|
|
private final long[] readKeys;
|
|
/** unsafe fields keys for writing fields - no dupes */
|
|
private final long[] writeKeys;
|
|
/** field data offsets */
|
|
private final int[] offsets;
|
|
/** field type codes */
|
|
private final char[] typeCodes;
|
|
/** field types */
|
|
private final Class<?>[] types;
|
|
|
|
/**
|
|
* Constructs FieldReflector capable of setting/getting values from the
|
|
* subset of fields whose ObjectStreamFields contain non-null
|
|
* reflective Field objects. ObjectStreamFields with null Fields are
|
|
* treated as filler, for which get operations return default values
|
|
* and set operations discard given values.
|
|
*/
|
|
FieldReflector(ObjectStreamField[] fields) {
|
|
this.fields = fields;
|
|
int nfields = fields.length;
|
|
readKeys = new long[nfields];
|
|
writeKeys = new long[nfields];
|
|
offsets = new int[nfields];
|
|
typeCodes = new char[nfields];
|
|
ArrayList<Class<?>> typeList = new ArrayList<>();
|
|
Set<Long> usedKeys = new HashSet<>();
|
|
|
|
|
|
for (int i = 0; i < nfields; i++) {
|
|
ObjectStreamField f = fields[i];
|
|
Field rf = f.getField();
|
|
long key = (rf != null) ?
|
|
UNSAFE.objectFieldOffset(rf) : Unsafe.INVALID_FIELD_OFFSET;
|
|
readKeys[i] = key;
|
|
writeKeys[i] = usedKeys.add(key) ?
|
|
key : Unsafe.INVALID_FIELD_OFFSET;
|
|
offsets[i] = f.getOffset();
|
|
typeCodes[i] = f.getTypeCode();
|
|
if (!f.isPrimitive()) {
|
|
typeList.add((rf != null) ? rf.getType() : null);
|
|
}
|
|
}
|
|
|
|
types = typeList.toArray(new Class<?>[typeList.size()]);
|
|
numPrimFields = nfields - types.length;
|
|
}
|
|
|
|
/**
|
|
* Returns list of ObjectStreamFields representing fields operated on
|
|
* by this reflector. The shared/unshared values and Field objects
|
|
* contained by ObjectStreamFields in the list reflect their bindings
|
|
* to locally defined serializable fields.
|
|
*/
|
|
ObjectStreamField[] getFields() {
|
|
return fields;
|
|
}
|
|
|
|
/**
|
|
* Fetches the serializable primitive field values of object obj and
|
|
* marshals them into byte array buf starting at offset 0. The caller
|
|
* is responsible for ensuring that obj is of the proper type.
|
|
*/
|
|
void getPrimFieldValues(Object obj, byte[] buf) {
|
|
if (obj == null) {
|
|
throw new NullPointerException();
|
|
}
|
|
/* assuming checkDefaultSerialize() has been called on the class
|
|
* descriptor this FieldReflector was obtained from, no field keys
|
|
* in array should be equal to Unsafe.INVALID_FIELD_OFFSET.
|
|
*/
|
|
for (int i = 0; i < numPrimFields; i++) {
|
|
long key = readKeys[i];
|
|
int off = offsets[i];
|
|
switch (typeCodes[i]) {
|
|
case 'Z' -> ByteArray.setBoolean(buf, off, UNSAFE.getBoolean(obj, key));
|
|
case 'B' -> buf[off] = UNSAFE.getByte(obj, key);
|
|
case 'C' -> ByteArray.setChar(buf, off, UNSAFE.getChar(obj, key));
|
|
case 'S' -> ByteArray.setShort(buf, off, UNSAFE.getShort(obj, key));
|
|
case 'I' -> ByteArray.setInt(buf, off, UNSAFE.getInt(obj, key));
|
|
case 'F' -> ByteArray.setFloat(buf, off, UNSAFE.getFloat(obj, key));
|
|
case 'J' -> ByteArray.setLong(buf, off, UNSAFE.getLong(obj, key));
|
|
case 'D' -> ByteArray.setDouble(buf, off, UNSAFE.getDouble(obj, key));
|
|
default -> throw new InternalError();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the serializable primitive fields of object obj using values
|
|
* unmarshalled from byte array buf starting at offset 0. The caller
|
|
* is responsible for ensuring that obj is of the proper type.
|
|
*/
|
|
void setPrimFieldValues(Object obj, byte[] buf) {
|
|
if (obj == null) {
|
|
throw new NullPointerException();
|
|
}
|
|
for (int i = 0; i < numPrimFields; i++) {
|
|
long key = writeKeys[i];
|
|
if (key == Unsafe.INVALID_FIELD_OFFSET) {
|
|
continue; // discard value
|
|
}
|
|
int off = offsets[i];
|
|
switch (typeCodes[i]) {
|
|
case 'Z' -> UNSAFE.putBoolean(obj, key, ByteArray.getBoolean(buf, off));
|
|
case 'B' -> UNSAFE.putByte(obj, key, buf[off]);
|
|
case 'C' -> UNSAFE.putChar(obj, key, ByteArray.getChar(buf, off));
|
|
case 'S' -> UNSAFE.putShort(obj, key, ByteArray.getShort(buf, off));
|
|
case 'I' -> UNSAFE.putInt(obj, key, ByteArray.getInt(buf, off));
|
|
case 'F' -> UNSAFE.putFloat(obj, key, ByteArray.getFloat(buf, off));
|
|
case 'J' -> UNSAFE.putLong(obj, key, ByteArray.getLong(buf, off));
|
|
case 'D' -> UNSAFE.putDouble(obj, key, ByteArray.getDouble(buf, off));
|
|
default -> throw new InternalError();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fetches the serializable object field values of object obj and
|
|
* stores them in array vals starting at offset 0. The caller is
|
|
* responsible for ensuring that obj is of the proper type.
|
|
*/
|
|
void getObjFieldValues(Object obj, Object[] vals) {
|
|
if (obj == null) {
|
|
throw new NullPointerException();
|
|
}
|
|
/* assuming checkDefaultSerialize() has been called on the class
|
|
* descriptor this FieldReflector was obtained from, no field keys
|
|
* in array should be equal to Unsafe.INVALID_FIELD_OFFSET.
|
|
*/
|
|
for (int i = numPrimFields; i < fields.length; i++) {
|
|
vals[offsets[i]] = switch (typeCodes[i]) {
|
|
case 'L', '[' -> UNSAFE.getReference(obj, readKeys[i]);
|
|
default -> throw new InternalError();
|
|
};
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Checks that the given values, from array vals starting at offset 0,
|
|
* are assignable to the given serializable object fields.
|
|
* @throws ClassCastException if any value is not assignable
|
|
*/
|
|
void checkObjectFieldValueTypes(Object obj, Object[] vals) {
|
|
setObjFieldValues(obj, vals, true);
|
|
}
|
|
|
|
/**
|
|
* Sets the serializable object fields of object obj using values from
|
|
* array vals starting at offset 0. The caller is responsible for
|
|
* ensuring that obj is of the proper type; however, attempts to set a
|
|
* field with a value of the wrong type will trigger an appropriate
|
|
* ClassCastException.
|
|
*/
|
|
void setObjFieldValues(Object obj, Object[] vals) {
|
|
setObjFieldValues(obj, vals, false);
|
|
}
|
|
|
|
private void setObjFieldValues(Object obj, Object[] vals, boolean dryRun) {
|
|
if (obj == null) {
|
|
throw new NullPointerException();
|
|
}
|
|
for (int i = numPrimFields; i < fields.length; i++) {
|
|
long key = writeKeys[i];
|
|
if (key == Unsafe.INVALID_FIELD_OFFSET) {
|
|
continue; // discard value
|
|
}
|
|
switch (typeCodes[i]) {
|
|
case 'L', '[' -> {
|
|
Object val = vals[offsets[i]];
|
|
if (val != null &&
|
|
!types[i - numPrimFields].isInstance(val))
|
|
{
|
|
Field f = fields[i].getField();
|
|
throw new ClassCastException(
|
|
+
|
|
val.getClass().getName() + +
|
|
f.getDeclaringClass().getName() + +
|
|
f.getName() + +
|
|
f.getType().getName() + +
|
|
obj.getClass().getName());
|
|
}
|
|
if (!dryRun)
|
|
UNSAFE.putReference(obj, key, val);
|
|
}
|
|
default -> throw new InternalError();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Matches given set of serializable fields with serializable fields
|
|
* described by the given local class descriptor, and returns a
|
|
* FieldReflector instance capable of setting/getting values from the
|
|
* subset of fields that match (non-matching fields are treated as filler,
|
|
* for which get operations return default values and set operations
|
|
* discard given values). Throws InvalidClassException if unresolvable
|
|
* type conflicts exist between the two sets of fields.
|
|
*/
|
|
private static FieldReflector getReflector(ObjectStreamField[] fields,
|
|
ObjectStreamClass localDesc)
|
|
throws InvalidClassException
|
|
{
|
|
// class irrelevant if no fields
|
|
Class<?> cl = (localDesc != null && fields.length > 0) ?
|
|
localDesc.cl : Void.class;
|
|
|
|
var clReflectors = Caches.reflectors.get(cl);
|
|
var key = new FieldReflectorKey(fields);
|
|
var reflector = clReflectors.get(key);
|
|
if (reflector == null) {
|
|
reflector = new FieldReflector(matchFields(fields, localDesc));
|
|
var oldReflector = clReflectors.putIfAbsent(key, reflector);
|
|
if (oldReflector != null) {
|
|
reflector = oldReflector;
|
|
}
|
|
}
|
|
return reflector;
|
|
}
|
|
|
|
/**
|
|
* FieldReflector cache lookup key. Keys are considered equal if they
|
|
* refer to equivalent field formats.
|
|
*/
|
|
private static class FieldReflectorKey {
|
|
|
|
private final String[] sigs;
|
|
private final int hash;
|
|
|
|
FieldReflectorKey(ObjectStreamField[] fields)
|
|
{
|
|
sigs = new String[2 * fields.length];
|
|
for (int i = 0, j = 0; i < fields.length; i++) {
|
|
ObjectStreamField f = fields[i];
|
|
sigs[j++] = f.getName();
|
|
sigs[j++] = f.getSignature();
|
|
}
|
|
hash = Arrays.hashCode(sigs);
|
|
}
|
|
|
|
public int hashCode() {
|
|
return hash;
|
|
}
|
|
|
|
public boolean equals(Object obj) {
|
|
return obj == this ||
|
|
obj instanceof FieldReflectorKey other &&
|
|
Arrays.equals(sigs, other.sigs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Matches given set of serializable fields with serializable fields
|
|
* obtained from the given local class descriptor (which contain bindings
|
|
* to reflective Field objects). Returns list of ObjectStreamFields in
|
|
* which each ObjectStreamField whose signature matches that of a local
|
|
* field contains a Field object for that field; unmatched
|
|
* ObjectStreamFields contain null Field objects. Shared/unshared settings
|
|
* of the returned ObjectStreamFields also reflect those of matched local
|
|
* ObjectStreamFields. Throws InvalidClassException if unresolvable type
|
|
* conflicts exist between the two sets of fields.
|
|
*/
|
|
private static ObjectStreamField[] matchFields(ObjectStreamField[] fields,
|
|
ObjectStreamClass localDesc)
|
|
throws InvalidClassException
|
|
{
|
|
ObjectStreamField[] localFields = (localDesc != null) ?
|
|
localDesc.fields : NO_FIELDS;
|
|
|
|
/*
|
|
* Even if fields == localFields, we cannot simply return localFields
|
|
* here. In previous implementations of serialization,
|
|
* ObjectStreamField.getType() returned Object.class if the
|
|
* ObjectStreamField represented a non-primitive field and belonged to
|
|
* a non-local class descriptor. To preserve this (questionable)
|
|
* behavior, the ObjectStreamField instances returned by matchFields
|
|
* cannot report non-primitive types other than Object.class; hence
|
|
* localFields cannot be returned directly.
|
|
*/
|
|
|
|
ObjectStreamField[] matches = new ObjectStreamField[fields.length];
|
|
for (int i = 0; i < fields.length; i++) {
|
|
ObjectStreamField f = fields[i], m = null;
|
|
for (int j = 0; j < localFields.length; j++) {
|
|
ObjectStreamField lf = localFields[j];
|
|
if (f.getName().equals(lf.getName())) {
|
|
if ((f.isPrimitive() || lf.isPrimitive()) &&
|
|
f.getTypeCode() != lf.getTypeCode())
|
|
{
|
|
throw new InvalidClassException(localDesc.name,
|
|
+ f.getName());
|
|
}
|
|
if (lf.getField() != null) {
|
|
m = new ObjectStreamField(
|
|
lf.getField(), lf.isUnshared(), false);
|
|
} else {
|
|
m = new ObjectStreamField(
|
|
lf.getName(), lf.getSignature(), lf.isUnshared());
|
|
}
|
|
}
|
|
}
|
|
if (m == null) {
|
|
m = new ObjectStreamField(
|
|
f.getName(), f.getSignature(), false);
|
|
}
|
|
m.setOffset(f.getOffset());
|
|
matches[i] = m;
|
|
}
|
|
return matches;
|
|
}
|
|
|
|
/**
|
|
* A LRA cache of record deserialization constructors.
|
|
*/
|
|
@SuppressWarnings()
|
|
private static final class DeserializationConstructorsCache
|
|
extends ConcurrentHashMap<DeserializationConstructorsCache.Key, MethodHandle> {
|
|
|
|
// keep max. 10 cached entries - when the 11th element is inserted the oldest
|
|
// is removed and 10 remains - 11 is the biggest map size where internal
|
|
// table of 16 elements is sufficient (inserting 12th element would resize it to 32)
|
|
private static final int MAX_SIZE = 10;
|
|
private Key.Impl first, last; // first and last in FIFO queue
|
|
|
|
DeserializationConstructorsCache() {
|
|
// start small - if there is more than one shape of ObjectStreamClass
|
|
// deserialized, there will typically be two (current version and previous version)
|
|
super(2);
|
|
}
|
|
|
|
MethodHandle get(ObjectStreamField[] fields) {
|
|
return get(new Key.Lookup(fields));
|
|
}
|
|
|
|
synchronized MethodHandle putIfAbsentAndGet(ObjectStreamField[] fields, MethodHandle mh) {
|
|
Key.Impl key = new Key.Impl(fields);
|
|
var oldMh = putIfAbsent(key, mh);
|
|
if (oldMh != null) return oldMh;
|
|
// else we did insert new entry -> link the new key as last
|
|
if (last == null) {
|
|
last = first = key;
|
|
} else {
|
|
last = (last.next = key);
|
|
}
|
|
// may need to remove first
|
|
if (size() > MAX_SIZE) {
|
|
assert first != null;
|
|
remove(first);
|
|
first = first.next;
|
|
if (first == null) {
|
|
last = null;
|
|
}
|
|
}
|
|
return mh;
|
|
}
|
|
|
|
// a key composed of ObjectStreamField[] names and types
|
|
abstract static class Key {
|
|
abstract int length();
|
|
abstract String fieldName(int i);
|
|
abstract Class<?> fieldType(int i);
|
|
|
|
@Override
|
|
public final int hashCode() {
|
|
int n = length();
|
|
int h = 0;
|
|
for (int i = 0; i < n; i++) h = h * 31 + fieldType(i).hashCode();
|
|
for (int i = 0; i < n; i++) h = h * 31 + fieldName(i).hashCode();
|
|
return h;
|
|
}
|
|
|
|
@Override
|
|
public final boolean equals(Object obj) {
|
|
if (!(obj instanceof Key other)) return false;
|
|
int n = length();
|
|
if (n != other.length()) return false;
|
|
for (int i = 0; i < n; i++) if (fieldType(i) != other.fieldType(i)) return false;
|
|
for (int i = 0; i < n; i++) if (!fieldName(i).equals(other.fieldName(i))) return false;
|
|
return true;
|
|
}
|
|
|
|
// lookup key - just wraps ObjectStreamField[]
|
|
static final class Lookup extends Key {
|
|
final ObjectStreamField[] fields;
|
|
|
|
Lookup(ObjectStreamField[] fields) { this.fields = fields; }
|
|
|
|
@Override
|
|
int length() { return fields.length; }
|
|
|
|
@Override
|
|
String fieldName(int i) { return fields[i].getName(); }
|
|
|
|
@Override
|
|
Class<?> fieldType(int i) { return fields[i].getType(); }
|
|
}
|
|
|
|
// real key - copies field names and types and forms FIFO queue in cache
|
|
static final class Impl extends Key {
|
|
Impl next;
|
|
final String[] fieldNames;
|
|
final Class<?>[] fieldTypes;
|
|
|
|
Impl(ObjectStreamField[] fields) {
|
|
this.fieldNames = new String[fields.length];
|
|
this.fieldTypes = new Class<?>[fields.length];
|
|
for (int i = 0; i < fields.length; i++) {
|
|
fieldNames[i] = fields[i].getName();
|
|
fieldTypes[i] = fields[i].getType();
|
|
}
|
|
}
|
|
|
|
@Override
|
|
int length() { return fieldNames.length; }
|
|
|
|
@Override
|
|
String fieldName(int i) { return fieldNames[i]; }
|
|
|
|
@Override
|
|
Class<?> fieldType(int i) { return fieldTypes[i]; }
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Record specific support for retrieving and binding stream field values. */
|
|
static final class RecordSupport {
|
|
/**
|
|
* Returns canonical record constructor adapted to take two arguments:
|
|
* {@code (byte[] primValues, Object[] objValues)}
|
|
* and return
|
|
* {@code Object}
|
|
*/
|
|
@SuppressWarnings()
|
|
static MethodHandle deserializationCtr(ObjectStreamClass desc) {
|
|
// check the cached value 1st
|
|
MethodHandle mh = desc.deserializationCtr;
|
|
if (mh != null) return mh;
|
|
mh = desc.deserializationCtrs.get(desc.getFields(false));
|
|
if (mh != null) return desc.deserializationCtr = mh;
|
|
|
|
// retrieve record components
|
|
RecordComponent[] recordComponents;
|
|
try {
|
|
Class<?> cls = desc.forClass();
|
|
PrivilegedExceptionAction<RecordComponent[]> pa = cls::getRecordComponents;
|
|
recordComponents = AccessController.doPrivileged(pa);
|
|
} catch (PrivilegedActionException e) {
|
|
throw new InternalError(e.getCause());
|
|
}
|
|
|
|
// retrieve the canonical constructor
|
|
// (T1, T2, ..., Tn):TR
|
|
mh = desc.getRecordConstructor();
|
|
|
|
// change return type to Object
|
|
// (T1, T2, ..., Tn):TR -> (T1, T2, ..., Tn):Object
|
|
mh = mh.asType(mh.type().changeReturnType(Object.class));
|
|
|
|
// drop last 2 arguments representing primValues and objValues arrays
|
|
// (T1, T2, ..., Tn):Object -> (T1, T2, ..., Tn, byte[], Object[]):Object
|
|
mh = MethodHandles.dropArguments(mh, mh.type().parameterCount(), byte[].class, Object[].class);
|
|
|
|
for (int i = recordComponents.length-1; i >= 0; i--) {
|
|
String name = recordComponents[i].getName();
|
|
Class<?> type = recordComponents[i].getType();
|
|
// obtain stream field extractor that extracts argument at
|
|
// position i (Ti+1) from primValues and objValues arrays
|
|
// (byte[], Object[]):Ti+1
|
|
MethodHandle combiner = streamFieldExtractor(name, type, desc);
|
|
// fold byte[] privValues and Object[] objValues into argument at position i (Ti+1)
|
|
// (..., Ti, Ti+1, byte[], Object[]):Object -> (..., Ti, byte[], Object[]):Object
|
|
mh = MethodHandles.foldArguments(mh, i, combiner);
|
|
}
|
|
// what we are left with is a MethodHandle taking just the primValues
|
|
// and objValues arrays and returning the constructed record instance
|
|
// (byte[], Object[]):Object
|
|
|
|
// store it into cache and return the 1st value stored
|
|
return desc.deserializationCtr =
|
|
desc.deserializationCtrs.putIfAbsentAndGet(desc.getFields(false), mh);
|
|
}
|
|
|
|
/** Returns the number of primitive fields for the given descriptor. */
|
|
private static int numberPrimValues(ObjectStreamClass desc) {
|
|
ObjectStreamField[] fields = desc.getFields();
|
|
int primValueCount = 0;
|
|
for (int i = 0; i < fields.length; i++) {
|
|
if (fields[i].isPrimitive())
|
|
primValueCount++;
|
|
else
|
|
break; // can be no more
|
|
}
|
|
return primValueCount;
|
|
}
|
|
|
|
/**
|
|
* Returns extractor MethodHandle taking the primValues and objValues arrays
|
|
* and extracting the argument of canonical constructor with given name and type
|
|
* or producing default value for the given type if the field is absent.
|
|
*/
|
|
private static MethodHandle streamFieldExtractor(String pName,
|
|
Class<?> pType,
|
|
ObjectStreamClass desc) {
|
|
ObjectStreamField[] fields = desc.getFields(false);
|
|
|
|
for (int i = 0; i < fields.length; i++) {
|
|
ObjectStreamField f = fields[i];
|
|
String fName = f.getName();
|
|
if (!fName.equals(pName))
|
|
continue;
|
|
|
|
Class<?> fType = f.getField().getType();
|
|
if (!pType.isAssignableFrom(fType))
|
|
throw new InternalError(fName + + fType);
|
|
|
|
if (f.isPrimitive()) {
|
|
// (byte[], int):fType
|
|
MethodHandle mh = PRIM_VALUE_EXTRACTORS.get(fType);
|
|
if (mh == null) {
|
|
throw new InternalError( + fType);
|
|
}
|
|
// bind offset
|
|
// (byte[], int):fType -> (byte[]):fType
|
|
mh = MethodHandles.insertArguments(mh, 1, f.getOffset());
|
|
// drop objValues argument
|
|
// (byte[]):fType -> (byte[], Object[]):fType
|
|
mh = MethodHandles.dropArguments(mh, 1, Object[].class);
|
|
// adapt return type to pType
|
|
// (byte[], Object[]):fType -> (byte[], Object[]):pType
|
|
if (pType != fType) {
|
|
mh = mh.asType(mh.type().changeReturnType(pType));
|
|
}
|
|
return mh;
|
|
} else { // reference
|
|
// (Object[], int):Object
|
|
MethodHandle mh = MethodHandles.arrayElementGetter(Object[].class);
|
|
// bind index
|
|
// (Object[], int):Object -> (Object[]):Object
|
|
mh = MethodHandles.insertArguments(mh, 1, i - numberPrimValues(desc));
|
|
// drop primValues argument
|
|
// (Object[]):Object -> (byte[], Object[]):Object
|
|
mh = MethodHandles.dropArguments(mh, 0, byte[].class);
|
|
// adapt return type to pType
|
|
// (byte[], Object[]):Object -> (byte[], Object[]):pType
|
|
if (pType != Object.class) {
|
|
mh = mh.asType(mh.type().changeReturnType(pType));
|
|
}
|
|
return mh;
|
|
}
|
|
}
|
|
|
|
// return default value extractor if no field matches pName
|
|
return MethodHandles.empty(MethodType.methodType(pType, byte[].class, Object[].class));
|
|
}
|
|
|
|
private static final Map<Class<?>, MethodHandle> PRIM_VALUE_EXTRACTORS;
|
|
static {
|
|
var lkp = MethodHandles.lookup();
|
|
try {
|
|
PRIM_VALUE_EXTRACTORS = Map.of(
|
|
byte.class, MethodHandles.arrayElementGetter(byte[].class),
|
|
short.class, lkp.findStatic(ByteArray.class, , MethodType.methodType(short.class, byte[].class, int.class)),
|
|
int.class, lkp.findStatic(ByteArray.class, , MethodType.methodType(int.class, byte[].class, int.class)),
|
|
long.class, lkp.findStatic(ByteArray.class, , MethodType.methodType(long.class, byte[].class, int.class)),
|
|
float.class, lkp.findStatic(ByteArray.class, , MethodType.methodType(float.class, byte[].class, int.class)),
|
|
double.class, lkp.findStatic(ByteArray.class, , MethodType.methodType(double.class, byte[].class, int.class)),
|
|
char.class, lkp.findStatic(ByteArray.class, , MethodType.methodType(char.class, byte[].class, int.class)),
|
|
boolean.class, lkp.findStatic(ByteArray.class, , MethodType.methodType(boolean.class, byte[].class, int.class))
|
|
);
|
|
} catch (NoSuchMethodException | IllegalAccessException e) {
|
|
throw new InternalError(, e);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copyright (c) 1995, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.net;
|
|
|
|
import java.io.IOException;
|
|
import java.io.UncheckedIOException;
|
|
import java.nio.channels.DatagramChannel;
|
|
import java.security.AccessController;
|
|
import java.security.PrivilegedExceptionAction;
|
|
import java.util.Enumeration;
|
|
import java.util.Objects;
|
|
import java.util.Set;
|
|
import java.util.Collections;
|
|
|
|
/**
|
|
* A multicast datagram socket that delegates socket operations to a
|
|
* {@link DatagramSocketImpl}.
|
|
*
|
|
* This class overrides every public method defined by {@link DatagramSocket}
|
|
* and {@link MulticastSocket}.
|
|
*/
|
|
final class NetMulticastSocket extends MulticastSocket {
|
|
/**
|
|
* Various states of this socket.
|
|
*/
|
|
private boolean bound = false;
|
|
private boolean closed = false;
|
|
private volatile boolean created;
|
|
private final Object closeLock = new Object();
|
|
|
|
/*
|
|
* The implementation of this DatagramSocket.
|
|
*/
|
|
private final DatagramSocketImpl impl;
|
|
|
|
/**
|
|
* Set when a socket is ST_CONNECTED until we are certain
|
|
* that any packets which might have been received prior
|
|
* to calling connect() but not read by the application
|
|
* have been read. During this time we check the source
|
|
* address of all packets received to be sure they are from
|
|
* the connected destination. Other packets are read but
|
|
* silently dropped.
|
|
*/
|
|
private boolean explicitFilter = false;
|
|
private int bytesLeftToFilter;
|
|
/*
|
|
* Connection state:
|
|
* ST_NOT_CONNECTED = socket not connected
|
|
* ST_CONNECTED = socket connected
|
|
*/
|
|
static final int ST_NOT_CONNECTED = 0;
|
|
static final int ST_CONNECTED = 1;
|
|
|
|
int connectState = ST_NOT_CONNECTED;
|
|
|
|
/*
|
|
* Connected address & port
|
|
*/
|
|
InetAddress connectedAddress = null;
|
|
int connectedPort = -1;
|
|
|
|
/**
|
|
* This constructor is also used by {@link DatagramSocket#DatagramSocket(DatagramSocketImpl)}.
|
|
* @param impl The impl used in this instance.
|
|
*/
|
|
NetMulticastSocket(DatagramSocketImpl impl) {
|
|
super((MulticastSocket) null);
|
|
this.impl = Objects.requireNonNull(impl);
|
|
}
|
|
|
|
/**
|
|
* Connects this socket to a remote socket address (IP address + port number).
|
|
* Binds socket if not already bound.
|
|
*
|
|
* @param address The remote address.
|
|
* @param port The remote port
|
|
* @throws SocketException if binding the socket fails.
|
|
*/
|
|
private synchronized void connectInternal(InetAddress address, int port) throws SocketException {
|
|
if (port < 0 || port > 0xFFFF) {
|
|
throw new IllegalArgumentException( + port);
|
|
}
|
|
if (address == null) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
checkAddress(address, );
|
|
if (isClosed())
|
|
return;
|
|
@SuppressWarnings()
|
|
SecurityManager security = System.getSecurityManager();
|
|
if (security != null) {
|
|
if (address.isMulticastAddress()) {
|
|
security.checkMulticast(address);
|
|
} else {
|
|
security.checkConnect(address.getHostAddress(), port);
|
|
security.checkAccept(address.getHostAddress(), port);
|
|
}
|
|
}
|
|
|
|
if (port == 0) {
|
|
throw new SocketException();
|
|
}
|
|
if (!isBound())
|
|
bind(new InetSocketAddress(0));
|
|
|
|
getImpl().connect(address, port);
|
|
|
|
// socket is now connected by the impl
|
|
connectState = ST_CONNECTED;
|
|
// Do we need to filter some packets?
|
|
int avail = getImpl().dataAvailable();
|
|
if (avail == -1) {
|
|
throw new SocketException();
|
|
}
|
|
explicitFilter = avail > 0;
|
|
if (explicitFilter) {
|
|
bytesLeftToFilter = getReceiveBufferSize();
|
|
}
|
|
|
|
connectedAddress = address;
|
|
connectedPort = port;
|
|
}
|
|
|
|
/**
|
|
* Return the {@code DatagramSocketImpl} attached to this socket,
|
|
* creating the socket if not already created.
|
|
*
|
|
* @return the {@code DatagramSocketImpl} attached to that
|
|
* DatagramSocket
|
|
* @throws SocketException if creating the socket fails
|
|
* @since 1.4
|
|
*/
|
|
final DatagramSocketImpl getImpl() throws SocketException {
|
|
if (!created) {
|
|
synchronized (this) {
|
|
if (!created) {
|
|
impl.create();
|
|
created = true;
|
|
}
|
|
}
|
|
}
|
|
return impl;
|
|
}
|
|
|
|
@Override
|
|
public synchronized void bind(SocketAddress addr) throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
if (isBound())
|
|
throw new SocketException();
|
|
if (addr == null)
|
|
addr = new InetSocketAddress(0);
|
|
if (!(addr instanceof InetSocketAddress epoint))
|
|
throw new IllegalArgumentException();
|
|
if (epoint.isUnresolved())
|
|
throw new SocketException();
|
|
InetAddress iaddr = epoint.getAddress();
|
|
int port = epoint.getPort();
|
|
checkAddress(iaddr, );
|
|
@SuppressWarnings()
|
|
SecurityManager sec = System.getSecurityManager();
|
|
if (sec != null) {
|
|
sec.checkListen(port);
|
|
}
|
|
try {
|
|
getImpl().bind(port, iaddr);
|
|
} catch (SocketException e) {
|
|
getImpl().close();
|
|
throw e;
|
|
}
|
|
bound = true;
|
|
}
|
|
|
|
static void checkAddress(InetAddress addr, String op) {
|
|
if (addr == null) {
|
|
return;
|
|
}
|
|
if (!(addr instanceof Inet4Address || addr instanceof Inet6Address)) {
|
|
throw new IllegalArgumentException(op + );
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void connect(InetAddress address, int port) {
|
|
try {
|
|
connectInternal(address, port);
|
|
} catch (SocketException se) {
|
|
throw new UncheckedIOException(, se);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void connect(SocketAddress addr) throws SocketException {
|
|
if (addr == null)
|
|
throw new IllegalArgumentException();
|
|
if (!(addr instanceof InetSocketAddress epoint))
|
|
throw new IllegalArgumentException();
|
|
if (epoint.isUnresolved())
|
|
throw new SocketException();
|
|
connectInternal(epoint.getAddress(), epoint.getPort());
|
|
}
|
|
|
|
@Override
|
|
public void disconnect() {
|
|
synchronized (this) {
|
|
if (isClosed())
|
|
return;
|
|
if (connectState == ST_CONNECTED) {
|
|
impl.disconnect();
|
|
}
|
|
connectedAddress = null;
|
|
connectedPort = -1;
|
|
connectState = ST_NOT_CONNECTED;
|
|
explicitFilter = false;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public boolean isBound() {
|
|
return bound;
|
|
}
|
|
|
|
@Override
|
|
public boolean isConnected() {
|
|
return connectState != ST_NOT_CONNECTED;
|
|
}
|
|
|
|
@Override
|
|
public InetAddress getInetAddress() {
|
|
return connectedAddress;
|
|
}
|
|
|
|
@Override
|
|
public int getPort() {
|
|
return connectedPort;
|
|
}
|
|
|
|
@Override
|
|
public SocketAddress getRemoteSocketAddress() {
|
|
if (!isConnected())
|
|
return null;
|
|
return new InetSocketAddress(getInetAddress(), getPort());
|
|
}
|
|
|
|
@Override
|
|
public SocketAddress getLocalSocketAddress() {
|
|
if (isClosed())
|
|
return null;
|
|
if (!isBound())
|
|
return null;
|
|
return new InetSocketAddress(getLocalAddress(), getLocalPort());
|
|
}
|
|
|
|
@Override
|
|
public void send(DatagramPacket p) throws IOException {
|
|
synchronized (p) {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
InetAddress packetAddress = p.getAddress();
|
|
int packetPort = p.getPort();
|
|
checkAddress(packetAddress, );
|
|
if (connectState == ST_NOT_CONNECTED) {
|
|
if (packetAddress == null) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
if (packetPort < 0 || packetPort > 0xFFFF)
|
|
throw new IllegalArgumentException( + packetPort);
|
|
// check the address is ok with the security manager on every send.
|
|
@SuppressWarnings()
|
|
SecurityManager security = System.getSecurityManager();
|
|
|
|
// The reason you want to synchronize on datagram packet
|
|
// is because you don't want an applet to change the address
|
|
// while you are trying to send the packet for example
|
|
// after the security check but before the send.
|
|
if (security != null) {
|
|
if (packetAddress.isMulticastAddress()) {
|
|
security.checkMulticast(packetAddress);
|
|
} else {
|
|
security.checkConnect(packetAddress.getHostAddress(),
|
|
packetPort);
|
|
}
|
|
}
|
|
if (packetPort == 0) {
|
|
throw new SocketException();
|
|
}
|
|
} else {
|
|
// we're connected
|
|
if (packetAddress == null) {
|
|
p.setAddress(connectedAddress);
|
|
p.setPort(connectedPort);
|
|
} else if ((!packetAddress.equals(connectedAddress)) ||
|
|
packetPort != connectedPort) {
|
|
throw new IllegalArgumentException( +
|
|
+
|
|
);
|
|
}
|
|
}
|
|
// Check whether the socket is bound
|
|
if (!isBound())
|
|
bind(new InetSocketAddress(0));
|
|
// call the method to send
|
|
getImpl().send(p);
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public synchronized void receive(DatagramPacket p) throws IOException {
|
|
synchronized (p) {
|
|
if (!isBound())
|
|
bind(new InetSocketAddress(0));
|
|
if (connectState == ST_NOT_CONNECTED) {
|
|
// check the address is ok with the security manager before every recv.
|
|
@SuppressWarnings()
|
|
SecurityManager security = System.getSecurityManager();
|
|
if (security != null) {
|
|
while (true) {
|
|
int peekPort = 0;
|
|
// peek at the packet to see who it is from.
|
|
DatagramPacket peekPacket = new DatagramPacket(new byte[1], 1);
|
|
peekPort = getImpl().peekData(peekPacket);
|
|
String peekAd = peekPacket.getAddress().getHostAddress();
|
|
try {
|
|
security.checkAccept(peekAd, peekPort);
|
|
// security check succeeded - so now break
|
|
// and recv the packet.
|
|
break;
|
|
} catch (SecurityException se) {
|
|
// Throw away the offending packet by consuming
|
|
// it in a tmp buffer.
|
|
DatagramPacket tmp = new DatagramPacket(new byte[1], 1);
|
|
getImpl().receive(tmp);
|
|
|
|
// silently discard the offending packet
|
|
// and continue: unknown/malicious
|
|
// entities on nets should not make
|
|
// runtime throw security exception and
|
|
// disrupt the applet by sending random
|
|
// datagram packets.
|
|
continue;
|
|
}
|
|
} // end of while
|
|
}
|
|
}
|
|
DatagramPacket tmp = null;
|
|
if (explicitFilter) {
|
|
// We have to do the filtering the old fashioned way since
|
|
// the native impl doesn't support connect or the connect
|
|
// via the impl failed, or .. may be set when
|
|
// a socket is connected via the impl, for a period of time
|
|
// when packets from other sources might be queued on socket.
|
|
boolean stop = false;
|
|
while (!stop) {
|
|
// peek at the packet to see who it is from.
|
|
DatagramPacket peekPacket = new DatagramPacket(new byte[1], 1);
|
|
int peekPort = getImpl().peekData(peekPacket);
|
|
InetAddress peekAddress = peekPacket.getAddress();
|
|
if ((!connectedAddress.equals(peekAddress)) || (connectedPort != peekPort)) {
|
|
// throw the packet away and silently continue
|
|
tmp = new DatagramPacket(
|
|
new byte[1024], 1024);
|
|
getImpl().receive(tmp);
|
|
if (explicitFilter) {
|
|
if (checkFiltering(tmp)) {
|
|
stop = true;
|
|
}
|
|
}
|
|
} else {
|
|
stop = true;
|
|
}
|
|
}
|
|
}
|
|
// If the security check succeeds, or the datagram is
|
|
// connected then receive the packet
|
|
getImpl().receive(p);
|
|
if (explicitFilter && tmp == null) {
|
|
// packet was not filtered, account for it here
|
|
checkFiltering(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
private boolean checkFiltering(DatagramPacket p) throws SocketException {
|
|
bytesLeftToFilter -= p.getLength();
|
|
if (bytesLeftToFilter <= 0 || getImpl().dataAvailable() <= 0) {
|
|
explicitFilter = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
@Override
|
|
public InetAddress getLocalAddress() {
|
|
if (isClosed())
|
|
return null;
|
|
InetAddress in;
|
|
try {
|
|
in = (InetAddress) getImpl().getOption(SocketOptions.SO_BINDADDR);
|
|
if (in.isAnyLocalAddress()) {
|
|
in = InetAddress.anyLocalAddress();
|
|
}
|
|
@SuppressWarnings()
|
|
SecurityManager s = System.getSecurityManager();
|
|
if (s != null) {
|
|
s.checkConnect(in.getHostAddress(), -1);
|
|
}
|
|
} catch (Exception e) {
|
|
in = InetAddress.anyLocalAddress(); //
|
|
}
|
|
return in;
|
|
}
|
|
|
|
@Override
|
|
public int getLocalPort() {
|
|
if (isClosed())
|
|
return -1;
|
|
try {
|
|
return getImpl().getLocalPort();
|
|
} catch (Exception e) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public synchronized void setSoTimeout(int timeout) throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
if (timeout < 0)
|
|
throw new IllegalArgumentException();
|
|
getImpl().setOption(SocketOptions.SO_TIMEOUT, timeout);
|
|
}
|
|
|
|
@Override
|
|
public synchronized int getSoTimeout() throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
if (getImpl() == null)
|
|
return 0;
|
|
Object o = getImpl().getOption(SocketOptions.SO_TIMEOUT);
|
|
/* extra type safety */
|
|
if (o instanceof Integer) {
|
|
return ((Integer) o).intValue();
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public synchronized void setSendBufferSize(int size) throws SocketException {
|
|
if (!(size > 0)) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
getImpl().setOption(SocketOptions.SO_SNDBUF, size);
|
|
}
|
|
|
|
@Override
|
|
public synchronized int getSendBufferSize() throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
int result = 0;
|
|
Object o = getImpl().getOption(SocketOptions.SO_SNDBUF);
|
|
if (o instanceof Integer) {
|
|
result = ((Integer) o).intValue();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
@Override
|
|
public synchronized void setReceiveBufferSize(int size) throws SocketException {
|
|
if (size <= 0) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
getImpl().setOption(SocketOptions.SO_RCVBUF, size);
|
|
}
|
|
|
|
@Override
|
|
public synchronized int getReceiveBufferSize() throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
int result = 0;
|
|
Object o = getImpl().getOption(SocketOptions.SO_RCVBUF);
|
|
if (o instanceof Integer) {
|
|
result = ((Integer) o).intValue();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
@Override
|
|
public synchronized void setReuseAddress(boolean on) throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
getImpl().setOption(SocketOptions.SO_REUSEADDR, Boolean.valueOf(on));
|
|
}
|
|
|
|
@Override
|
|
public synchronized boolean getReuseAddress() throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
Object o = getImpl().getOption(SocketOptions.SO_REUSEADDR);
|
|
return ((Boolean) o).booleanValue();
|
|
}
|
|
|
|
@Override
|
|
public synchronized void setBroadcast(boolean on) throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
getImpl().setOption(SocketOptions.SO_BROADCAST, Boolean.valueOf(on));
|
|
}
|
|
|
|
@Override
|
|
public synchronized boolean getBroadcast() throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
return ((Boolean) (getImpl().getOption(SocketOptions.SO_BROADCAST))).booleanValue();
|
|
}
|
|
|
|
@Override
|
|
public synchronized void setTrafficClass(int tc) throws SocketException {
|
|
if (tc < 0 || tc > 255)
|
|
throw new IllegalArgumentException();
|
|
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
try {
|
|
getImpl().setOption(SocketOptions.IP_TOS, tc);
|
|
} catch (SocketException se) {
|
|
// not supported if socket already connected
|
|
// Solaris returns error in such cases
|
|
if (!isConnected())
|
|
throw se;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public synchronized int getTrafficClass() throws SocketException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
return ((Integer) (getImpl().getOption(SocketOptions.IP_TOS))).intValue();
|
|
}
|
|
|
|
@Override
|
|
public void close() {
|
|
synchronized (closeLock) {
|
|
if (isClosed())
|
|
return;
|
|
impl.close();
|
|
closed = true;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public boolean isClosed() {
|
|
synchronized (closeLock) {
|
|
return closed;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public <T> DatagramSocket setOption(SocketOption<T> name, T value)
|
|
throws IOException
|
|
{
|
|
Objects.requireNonNull(name);
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
getImpl().setOption(name, value);
|
|
return this;
|
|
}
|
|
|
|
@Override
|
|
public <T> T getOption(SocketOption<T> name) throws IOException {
|
|
Objects.requireNonNull(name);
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
return getImpl().getOption(name);
|
|
}
|
|
|
|
private volatile Set<SocketOption<?>> options;
|
|
private final Object optionsLock = new Object();
|
|
|
|
@Override
|
|
public Set<SocketOption<?>> supportedOptions() {
|
|
Set<SocketOption<?>> options = this.options;
|
|
if (options != null)
|
|
return options;
|
|
synchronized (optionsLock) {
|
|
options = this.options;
|
|
if (options != null) {
|
|
return options;
|
|
}
|
|
try {
|
|
DatagramSocketImpl impl = getImpl();
|
|
options = Collections.unmodifiableSet(impl.supportedOptions());
|
|
} catch (IOException e) {
|
|
options = Collections.emptySet();
|
|
}
|
|
return this.options = options;
|
|
}
|
|
}
|
|
|
|
// Multicast socket support
|
|
|
|
/**
|
|
* Used on some platforms to record if an outgoing interface
|
|
* has been set for this socket.
|
|
*/
|
|
private boolean interfaceSet;
|
|
|
|
/**
|
|
* The lock on the socket's TTL. This is for set/getTTL and
|
|
* send(packet,ttl).
|
|
*/
|
|
private final Object ttlLock = new Object();
|
|
|
|
/**
|
|
* The lock on the socket's interface - used by setInterface
|
|
* and getInterface
|
|
*/
|
|
private final Object infLock = new Object();
|
|
|
|
/**
|
|
* The interface set by setInterface on this MulticastSocket
|
|
*/
|
|
private InetAddress infAddress = null;
|
|
|
|
@Deprecated
|
|
@Override
|
|
public void setTTL(byte ttl) throws IOException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
getImpl().setTTL(ttl);
|
|
}
|
|
|
|
@Override
|
|
public void setTimeToLive(int ttl) throws IOException {
|
|
if (ttl < 0 || ttl > 255) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
getImpl().setTimeToLive(ttl);
|
|
}
|
|
|
|
@Deprecated
|
|
@Override
|
|
public byte getTTL() throws IOException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
return getImpl().getTTL();
|
|
}
|
|
|
|
@Override
|
|
public int getTimeToLive() throws IOException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
return getImpl().getTimeToLive();
|
|
}
|
|
|
|
@Override
|
|
@Deprecated
|
|
public void joinGroup(InetAddress mcastaddr) throws IOException {
|
|
if (isClosed()) {
|
|
throw new SocketException();
|
|
}
|
|
|
|
checkAddress(mcastaddr, );
|
|
@SuppressWarnings()
|
|
SecurityManager security = System.getSecurityManager();
|
|
if (security != null) {
|
|
security.checkMulticast(mcastaddr);
|
|
}
|
|
|
|
if (!mcastaddr.isMulticastAddress()) {
|
|
throw new SocketException();
|
|
}
|
|
|
|
/**
|
|
* required for some platforms where it's not possible to join
|
|
* a group without setting the interface first.
|
|
*/
|
|
NetworkInterface defaultInterface = NetworkInterface.getDefault();
|
|
|
|
if (!interfaceSet && defaultInterface != null) {
|
|
setNetworkInterface(defaultInterface);
|
|
}
|
|
|
|
getImpl().join(mcastaddr);
|
|
}
|
|
|
|
@Override
|
|
@Deprecated
|
|
public void leaveGroup(InetAddress mcastaddr) throws IOException {
|
|
if (isClosed()) {
|
|
throw new SocketException();
|
|
}
|
|
|
|
checkAddress(mcastaddr, );
|
|
@SuppressWarnings()
|
|
SecurityManager security = System.getSecurityManager();
|
|
if (security != null) {
|
|
security.checkMulticast(mcastaddr);
|
|
}
|
|
|
|
if (!mcastaddr.isMulticastAddress()) {
|
|
throw new SocketException();
|
|
}
|
|
|
|
getImpl().leave(mcastaddr);
|
|
}
|
|
|
|
@Override
|
|
public void joinGroup(SocketAddress mcastaddr, NetworkInterface netIf)
|
|
throws IOException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
|
|
if (!(mcastaddr instanceof InetSocketAddress addr))
|
|
throw new IllegalArgumentException();
|
|
|
|
checkAddress(addr.getAddress(), );
|
|
@SuppressWarnings()
|
|
SecurityManager security = System.getSecurityManager();
|
|
if (security != null) {
|
|
security.checkMulticast(addr.getAddress());
|
|
}
|
|
|
|
if (!addr.getAddress().isMulticastAddress()) {
|
|
throw new SocketException();
|
|
}
|
|
|
|
getImpl().joinGroup(mcastaddr, netIf);
|
|
}
|
|
|
|
@Override
|
|
public void leaveGroup(SocketAddress mcastaddr, NetworkInterface netIf)
|
|
throws IOException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
|
|
if (!(mcastaddr instanceof InetSocketAddress addr))
|
|
throw new IllegalArgumentException();
|
|
|
|
checkAddress(addr.getAddress(), );
|
|
@SuppressWarnings()
|
|
SecurityManager security = System.getSecurityManager();
|
|
if (security != null) {
|
|
security.checkMulticast(addr.getAddress());
|
|
}
|
|
|
|
if (!addr.getAddress().isMulticastAddress()) {
|
|
throw new SocketException();
|
|
}
|
|
|
|
getImpl().leaveGroup(mcastaddr, netIf);
|
|
}
|
|
|
|
@Override
|
|
@Deprecated
|
|
public void setInterface(InetAddress inf) throws SocketException {
|
|
if (isClosed()) {
|
|
throw new SocketException();
|
|
}
|
|
checkAddress(inf, );
|
|
synchronized (infLock) {
|
|
getImpl().setOption(SocketOptions.IP_MULTICAST_IF, inf);
|
|
infAddress = inf;
|
|
interfaceSet = true;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
@Deprecated
|
|
public InetAddress getInterface() throws SocketException {
|
|
if (isClosed()) {
|
|
throw new SocketException();
|
|
}
|
|
synchronized (infLock) {
|
|
InetAddress ia =
|
|
(InetAddress)getImpl().getOption(SocketOptions.IP_MULTICAST_IF);
|
|
|
|
/**
|
|
* No previous setInterface or interface can be
|
|
* set using setNetworkInterface
|
|
*/
|
|
if (infAddress == null) {
|
|
return ia;
|
|
}
|
|
|
|
/**
|
|
* Same interface set with setInterface?
|
|
*/
|
|
if (ia.equals(infAddress)) {
|
|
return ia;
|
|
}
|
|
|
|
/**
|
|
* Different InetAddress from what we set with setInterface
|
|
* so enumerate the current interface to see if the
|
|
* address set by setInterface is bound to this interface.
|
|
*/
|
|
try {
|
|
NetworkInterface ni = NetworkInterface.getByInetAddress(ia);
|
|
Enumeration<InetAddress> addrs = ni.getInetAddresses();
|
|
while (addrs.hasMoreElements()) {
|
|
InetAddress addr = addrs.nextElement();
|
|
if (addr.equals(infAddress)) {
|
|
return infAddress;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* No match so reset infAddress to indicate that the
|
|
* interface has changed via means
|
|
*/
|
|
infAddress = null;
|
|
return ia;
|
|
} catch (Exception e) {
|
|
return ia;
|
|
}
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public void setNetworkInterface(NetworkInterface netIf)
|
|
throws SocketException {
|
|
|
|
synchronized (infLock) {
|
|
getImpl().setOption(SocketOptions.IP_MULTICAST_IF2, netIf);
|
|
infAddress = null;
|
|
interfaceSet = true;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public NetworkInterface getNetworkInterface() throws SocketException {
|
|
NetworkInterface ni
|
|
= (NetworkInterface)getImpl().getOption(SocketOptions.IP_MULTICAST_IF2);
|
|
if (ni == null) {
|
|
InetAddress[] addrs = new InetAddress[1];
|
|
addrs[0] = InetAddress.anyLocalAddress();
|
|
return new NetworkInterface(addrs[0].getHostName(), 0, addrs);
|
|
} else {
|
|
return ni;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
@Deprecated
|
|
public void setLoopbackMode(boolean disable) throws SocketException {
|
|
getImpl().setOption(SocketOptions.IP_MULTICAST_LOOP, Boolean.valueOf(disable));
|
|
}
|
|
|
|
@Override
|
|
@Deprecated
|
|
public boolean getLoopbackMode() throws SocketException {
|
|
return ((Boolean)getImpl().getOption(SocketOptions.IP_MULTICAST_LOOP)).booleanValue();
|
|
}
|
|
|
|
@SuppressWarnings()
|
|
@Deprecated
|
|
@Override
|
|
public void send(DatagramPacket p, byte ttl)
|
|
throws IOException {
|
|
if (isClosed())
|
|
throw new SocketException();
|
|
synchronized(ttlLock) {
|
|
synchronized(p) {
|
|
InetAddress packetAddress = p.getAddress();
|
|
checkAddress(packetAddress, );
|
|
if (connectState == NetMulticastSocket.ST_NOT_CONNECTED) {
|
|
if (packetAddress == null) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
// Security manager makes sure that the multicast address
|
|
// is allowed one and that the ttl used is less
|
|
// than the allowed maxttl.
|
|
SecurityManager security = System.getSecurityManager();
|
|
if (security != null) {
|
|
if (packetAddress.isMulticastAddress()) {
|
|
security.checkMulticast(packetAddress, ttl);
|
|
} else {
|
|
security.checkConnect(packetAddress.getHostAddress(),
|
|
p.getPort());
|
|
}
|
|
}
|
|
} else {
|
|
// we're connected
|
|
if (packetAddress == null) {
|
|
p.setAddress(connectedAddress);
|
|
p.setPort(connectedPort);
|
|
} else if ((!packetAddress.equals(connectedAddress)) ||
|
|
p.getPort() != connectedPort) {
|
|
throw new IllegalArgumentException( +
|
|
);
|
|
}
|
|
}
|
|
byte dttl = getTTL();
|
|
try {
|
|
if (ttl != dttl) {
|
|
// set the ttl
|
|
getImpl().setTTL(ttl);
|
|
}
|
|
if (p.getPort() == 0) {
|
|
throw new SocketException();
|
|
}
|
|
// call the datagram method to send
|
|
getImpl().send(p);
|
|
} finally {
|
|
// set it back to default
|
|
if (ttl != dttl) {
|
|
getImpl().setTTL(dttl);
|
|
}
|
|
}
|
|
} // synch p
|
|
} //synch ttl
|
|
} //method
|
|
}
|
|
|
|
/*
|
|
* Copyright (c) 1995, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
package java.io;
|
|
|
|
import java.util.Objects;
|
|
|
|
/**
|
|
* A piped input stream should be connected
|
|
* to a piped output stream; the piped input
|
|
* stream then provides whatever data bytes
|
|
* are written to the piped output stream.
|
|
* Typically, data is read from a {@code PipedInputStream}
|
|
* object by one thread and data is written
|
|
* to the corresponding {@code PipedOutputStream}
|
|
* by some other thread. Attempting to use
|
|
* both objects from a single thread is not
|
|
* recommended, as it may deadlock the thread.
|
|
* The piped input stream contains a buffer,
|
|
* decoupling read operations from write operations,
|
|
* within limits.
|
|
* A pipe is said to be <a id=> <i>broken</i> </a> if a
|
|
* thread that was providing data bytes to the connected
|
|
* piped output stream is no longer alive.
|
|
*
|
|
* @author James Gosling
|
|
* @see java.io.PipedOutputStream
|
|
* @since 1.0
|
|
*/
|
|
public class PipedInputStream extends InputStream {
|
|
boolean closedByWriter;
|
|
volatile boolean closedByReader;
|
|
boolean connected;
|
|
|
|
/* REMIND: identification of the read and write sides needs to be
|
|
more sophisticated. Either using thread groups (but what about
|
|
pipes within a thread?) or using finalization (but it may be a
|
|
long time until the next GC). */
|
|
Thread readSide;
|
|
Thread writeSide;
|
|
|
|
private static final int DEFAULT_PIPE_SIZE = 1024;
|
|
|
|
/**
|
|
* The default size of the pipe's circular input buffer.
|
|
* @since 1.1
|
|
*/
|
|
// This used to be a constant before the pipe size was allowed
|
|
// to change. This field will continue to be maintained
|
|
// for backward compatibility.
|
|
protected static final int PIPE_SIZE = DEFAULT_PIPE_SIZE;
|
|
|
|
/**
|
|
* The circular buffer into which incoming data is placed.
|
|
* @since 1.1
|
|
*/
|
|
protected byte buffer[];
|
|
|
|
/**
|
|
* The index of the position in the circular buffer at which the
|
|
* next byte of data will be stored when received from the connected
|
|
* piped output stream. {@code in < 0} implies the buffer is empty,
|
|
* {@code in == out} implies the buffer is full
|
|
* @since 1.1
|
|
*/
|
|
protected int in = -1;
|
|
|
|
/**
|
|
* The index of the position in the circular buffer at which the next
|
|
* byte of data will be read by this piped input stream.
|
|
* @since 1.1
|
|
*/
|
|
protected int out = 0;
|
|
|
|
/**
|
|
* Creates a {@code PipedInputStream} so
|
|
* that it is connected to the piped output
|
|
* stream {@code src}. Data bytes written
|
|
* to {@code src} will then be available
|
|
* as input from this stream.
|
|
*
|
|
* @param src the stream to connect to.
|
|
* @throws IOException if an I/O error occurs.
|
|
*/
|
|
public PipedInputStream(PipedOutputStream src) throws IOException {
|
|
this(src, DEFAULT_PIPE_SIZE);
|
|
}
|
|
|
|
/**
|
|
* Creates a {@code PipedInputStream} so that it is
|
|
* connected to the piped output stream
|
|
* {@code src} and uses the specified pipe size for
|
|
* the pipe's buffer.
|
|
* Data bytes written to {@code src} will then
|
|
* be available as input from this stream.
|
|
*
|
|
* @param src the stream to connect to.
|
|
* @param pipeSize the size of the pipe's buffer.
|
|
* @throws IOException if an I/O error occurs.
|
|
* @throws IllegalArgumentException if {@code pipeSize <= 0}.
|
|
* @since 1.6
|
|
*/
|
|
public PipedInputStream(PipedOutputStream src, int pipeSize)
|
|
throws IOException {
|
|
initPipe(pipeSize);
|
|
connect(src);
|
|
}
|
|
|
|
/**
|
|
* Creates a {@code PipedInputStream} so
|
|
* that it is not yet {@linkplain #connect(java.io.PipedOutputStream)
|
|
* connected}.
|
|
* It must be {@linkplain java.io.PipedOutputStream#connect(
|
|
* java.io.PipedInputStream) connected} to a
|
|
* {@code PipedOutputStream} before being used.
|
|
*/
|
|
public PipedInputStream() {
|
|
initPipe(DEFAULT_PIPE_SIZE);
|
|
}
|
|
|
|
/**
|
|
* Creates a {@code PipedInputStream} so that it is not yet
|
|
* {@linkplain #connect(java.io.PipedOutputStream) connected} and
|
|
* uses the specified pipe size for the pipe's buffer.
|
|
* It must be {@linkplain java.io.PipedOutputStream#connect(
|
|
* java.io.PipedInputStream)
|
|
* connected} to a {@code PipedOutputStream} before being used.
|
|
*
|
|
* @param pipeSize the size of the pipe's buffer.
|
|
* @throws IllegalArgumentException if {@code pipeSize <= 0}.
|
|
* @since 1.6
|
|
*/
|
|
public PipedInputStream(int pipeSize) {
|
|
initPipe(pipeSize);
|
|
}
|
|
|
|
private void initPipe(int pipeSize) {
|
|
if (pipeSize <= 0) {
|
|
throw new IllegalArgumentException();
|
|
}
|
|
buffer = new byte[pipeSize];
|
|
}
|
|
|
|
/**
|
|
* Causes this piped input stream to be connected
|
|
* to the piped output stream {@code src}.
|
|
* If this object is already connected to some
|
|
* other piped output stream, an {@code IOException}
|
|
* is thrown.
|
|
* <p>
|
|
* If {@code src} is an
|
|
* unconnected piped output stream and {@code snk}
|
|
* is an unconnected piped input stream, they
|
|
* may be connected by either the call:
|
|
*
|
|
* {@snippet lang=java :
|
|
* snk.connect(src)
|
|
* }
|
|
* <p>
|
|
* or the call:
|
|
*
|
|
* {@snippet lang=java :
|
|
* src.connect(snk)
|
|
* }
|
|
* <p>
|
|
* The two calls have the same effect.
|
|
*
|
|
* @param src The piped output stream to connect to.
|
|
* @throws IOException if an I/O error occurs.
|
|
*/
|
|
public void connect(PipedOutputStream src) throws IOException {
|
|
src.connect(this);
|
|
}
|
|
|
|
/**
|
|
* Receives a byte of data. This method will block if no input is
|
|
* available.
|
|
* @param b the byte being received
|
|
* @throws IOException If the pipe is <a href=> {@code broken}</a>,
|
|
* {@link #connect(java.io.PipedOutputStream) unconnected},
|
|
* closed, or if an I/O error occurs.
|
|
* @since 1.1
|
|
*/
|
|
protected synchronized void receive(int b) throws IOException {
|
|
checkStateForReceive();
|
|
writeSide = Thread.currentThread();
|
|
if (in == out)
|
|
awaitSpace();
|
|
if (in < 0) {
|
|
in = 0;
|
|
out = 0;
|
|
}
|
|
buffer[in++] = (byte)(b & 0xFF);
|
|
if (in >= buffer.length) {
|
|
in = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Receives data into an array of bytes. This method will
|
|
* block until some input is available.
|
|
* @param b the buffer into which the data is received
|
|
* @param off the start offset of the data
|
|
* @param len the maximum number of bytes received
|
|
* @throws IOException If the pipe is <a href=> broken</a>,
|
|
* {@link #connect(java.io.PipedOutputStream) unconnected},
|
|
* closed, or if an I/O error occurs.
|
|
*/
|
|
synchronized void receive(byte[] b, int off, int len) throws IOException {
|
|
checkStateForReceive();
|
|
writeSide = Thread.currentThread();
|
|
int bytesToTransfer = len;
|
|
while (bytesToTransfer > 0) {
|
|
if (in == out)
|
|
awaitSpace();
|
|
int nextTransferAmount = 0;
|
|
if (out < in) {
|
|
nextTransferAmount = buffer.length - in;
|
|
} else if (in < out) {
|
|
if (in == -1) {
|
|
in = out = 0;
|
|
nextTransferAmount = buffer.length - in;
|
|
} else {
|
|
nextTransferAmount = out - in;
|
|
}
|
|
}
|
|
if (nextTransferAmount > bytesToTransfer)
|
|
nextTransferAmount = bytesToTransfer;
|
|
assert(nextTransferAmount > 0);
|
|
System.arraycopy(b, off, buffer, in, nextTransferAmount);
|
|
bytesToTransfer -= nextTransferAmount;
|
|
off += nextTransferAmount;
|
|
in += nextTransferAmount;
|
|
if (in >= buffer.length) {
|
|
in = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
private void checkStateForReceive() throws IOException {
|
|
if (!connected) {
|
|
throw new IOException();
|
|
} else if (closedByWriter || closedByReader) {
|
|
throw new IOException();
|
|
} else if (readSide != null && !readSide.isAlive()) {
|
|
throw new IOException();
|
|
}
|
|
}
|
|
|
|
private void awaitSpace() throws IOException {
|
|
while (in == out) {
|
|
checkStateForReceive();
|
|
|
|
/* full: kick any waiting readers */
|
|
notifyAll();
|
|
try {
|
|
wait(1000);
|
|
} catch (InterruptedException ex) {
|
|
throw new java.io.InterruptedIOException();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Notifies all waiting threads that the last byte of data has been
|
|
* received.
|
|
*/
|
|
synchronized void receivedLast() {
|
|
closedByWriter = true;
|
|
notifyAll();
|
|
}
|
|
|
|
/**
|
|
* Reads the next byte of data from this piped input stream. The
|
|
* value byte is returned as an {@code int} in the range
|
|
* {@code 0} to {@code 255}.
|
|
* This method blocks until input data is available, the end of the
|
|
* stream is detected, or an exception is thrown.
|
|
*
|
|
* @return {@inheritDoc}
|
|
* @throws IOException if the pipe is
|
|
* {@link #connect(java.io.PipedOutputStream) unconnected},
|
|
* <a href=> {@code broken}</a>, closed,
|
|
* or if an I/O error occurs.
|
|
*/
|
|
@Override
|
|
public synchronized int read() throws IOException {
|
|
if (!connected) {
|
|
throw new IOException();
|
|
} else if (closedByReader) {
|
|
throw new IOException();
|
|
} else if (writeSide != null && !writeSide.isAlive()
|
|
&& !closedByWriter && (in < 0)) {
|
|
throw new IOException();
|
|
}
|
|
|
|
readSide = Thread.currentThread();
|
|
int trials = 2;
|
|
while (in < 0) {
|
|
if (closedByWriter) {
|
|
/* closed by writer, return EOF */
|
|
return -1;
|
|
}
|
|
if ((writeSide != null) && (!writeSide.isAlive()) && (--trials < 0)) {
|
|
throw new IOException();
|
|
}
|
|
/* might be a writer waiting */
|
|
notifyAll();
|
|
try {
|
|
wait(1000);
|
|
} catch (InterruptedException ex) {
|
|
throw new java.io.InterruptedIOException();
|
|
}
|
|
}
|
|
int ret = buffer[out++] & 0xFF;
|
|
if (out >= buffer.length) {
|
|
out = 0;
|
|
}
|
|
if (in == out) {
|
|
/* now empty */
|
|
in = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads up to {@code len} bytes of data from this piped input
|
|
* stream into an array of bytes. Less than {@code len} bytes
|
|
* will be read if the end of the data stream is reached or if
|
|
* {@code len} exceeds the pipe's buffer size.
|
|
* If {@code len } is zero, then no bytes are read and 0 is returned;
|
|
* otherwise, the method blocks until at least 1 byte of input is
|
|
* available, end of the stream has been detected, or an exception is
|
|
* thrown.
|
|
*
|
|
* @param b {@inheritDoc}
|
|
* @param off {@inheritDoc}
|
|
* @param len {@inheritDoc}
|
|
* @return {@inheritDoc}
|
|
* @throws NullPointerException {@inheritDoc}
|
|
* @throws IndexOutOfBoundsException {@inheritDoc}
|
|
* @throws IOException if the pipe is <a href=> {@code broken}</a>,
|
|
* {@link #connect(java.io.PipedOutputStream) unconnected},
|
|
* closed, or if an I/O error occurs.
|
|
*/
|
|
@Override
|
|
public synchronized int read(byte[] b, int off, int len) throws IOException {
|
|
if (b == null) {
|
|
throw new NullPointerException();
|
|
}
|
|
Objects.checkFromIndexSize(off, len, b.length);
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* possibly wait on the first character */
|
|
int c = read();
|
|
if (c < 0) {
|
|
return -1;
|
|
}
|
|
b[off] = (byte) c;
|
|
int rlen = 1;
|
|
while ((in >= 0) && (len > 1)) {
|
|
|
|
int available;
|
|
|
|
if (in > out) {
|
|
available = Math.min((buffer.length - out), (in - out));
|
|
} else {
|
|
available = buffer.length - out;
|
|
}
|
|
|
|
// A byte is read beforehand outside the loop
|
|
if (available > (len - 1)) {
|
|
available = len - 1;
|
|
}
|
|
System.arraycopy(buffer, out, b, off + rlen, available);
|
|
out += available;
|
|
rlen += available;
|
|
len -= available;
|
|
|
|
if (out >= buffer.length) {
|
|
out = 0;
|
|
}
|
|
if (in == out) {
|
|
/* now empty */
|
|
in = -1;
|
|
}
|
|
}
|
|
return rlen;
|
|
}
|
|
|
|
/**
|
|
* Returns the number of bytes that can be read from this input
|
|
* stream without blocking.
|
|
*
|
|
* @return the number of bytes that can be read from this input stream
|
|
* without blocking, or {@code 0} if this input stream has been
|
|
* closed by invoking its {@link #close()} method, or if the pipe
|
|
* is {@link #connect(java.io.PipedOutputStream) unconnected}, or
|
|
* <a href=> {@code broken}</a>.
|
|
*
|
|
* @throws IOException {@inheritDoc}
|
|
* @since 1.0.2
|
|
*/
|
|
@Override
|
|
public synchronized int available() throws IOException {
|
|
if(in < 0)
|
|
return 0;
|
|
else if(in == out)
|
|
return buffer.length;
|
|
else if (in > out)
|
|
return in - out;
|
|
else
|
|
return in + buffer.length - out;
|
|
}
|
|
|
|
/**
|
|
* {@inheritDoc}
|
|
*
|
|
* @throws IOException {@inheritDoc}
|
|
*/
|
|
@Override
|
|
public void close() throws IOException {
|
|
closedByReader = true;
|
|
synchronized (this) {
|
|
in = -1;
|
|
}
|
|
}
|
|
} |